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The semiclassical (SC) initial value representation (IVR) provides a potentially practical way for adding
quantum mechanical effects to classical molecular dynamics (MD) simulations of the dynamics of complex
molecular systems (i.e., those with many degrees of freedom). It does this by replacing the nonlinear boundary
value problem of semiclassical theory by an average over the initial conditions of classical trajectories. This
paper reviews the background and rebirth of interest in such approaches and surveys a variety of their recent
applications. Special focus is on the ability to treat the dynamics of complex systems, and in this regard, the
forward-backward (FB) version of the approach is especially promising. Several examples of the FB-IVR
applied to model problems of many degrees of freedom show it to be capable of describing quantum effects
quite well and also how these effects are quenched when some of the degrees of freedom are averaged over
(“decoherence”).

I. Introduction

It is well-known that classical molecular dynamics (MD)
simulations are widely used nowadays to describe a variety of
dynamical processes in complex molecular systems, e.g.,
chemical reactions in solution, in (or on) solids, in clusters, and
in biomolecular environments. Nature, however, obeys quantum
rather than classical mechanics, so that it would clearly be
desirable to have theoretical approaches capable of including
quantum coherence and tunneling effects into classical MD, even
approximately, to show when they are important and when they
are not. For some processes, particularly those involving
hydrogen atom motion, one can reasonably expect quantum
effects to be significant. Solvation dynamics, for example,
primarily involves the reorientation of the dipoles of water
molecules, and this is almost exclusively hydrogen atom motion
(i.e., the rotation of water molecules). Also, as soon as one
allows the OH (or CH or NH) bond to become dynamically
active (most classical MD simulations use rigid-rotor H2O
molecules), as one obviously must when these bonds are broken
and participate as a reactant or product in a chemical reaction,
quantum effects may become significant (recall thatpω for an
OH stretch vibration is∼18 timeskT at room temperature).
Furthermore, any process that involves transitions between
different Born-Oppenheimer electronic statessalmost always
the case in photochemistrysnecessarily involves quantum
mechanics for the nonadiabatic dynamics of the electronic
degrees of freedom, and one must somehow combine this with
a consistent description of the dynamics of nuclear motion.

Since a complete quantum treatment of the dynamics1 of
many degrees of freedom is not feasible, there are several ways
one can proceed in order to model these phenomena theoreti-
cally. One is to employ various mixed quantum-classical
models,2 whereby a few of the most important degrees of

freedom are treated quantum mechanically and the remaining
(many) degrees of freedom treated by classical mechanics. There
are many variations on this idea, and they have been useful in
a variety of applications. As with any approximate model,
however, there are shortcomings of such approaches, related
primarily to the ultimate inconsistency of describing different
degrees of freedom differently. For thermal ensembles, there
are also several ways of defining an effective potential3 that
includes some quantum effects and on which classical trajec-
tories are then evolved.

Another strategy, which has had a rebirth of interest recently
and is the subject of this paper, is to treat all degrees of freedom
(even the electronic degrees of freedom involved in a nonadia-
batic process) semiclassically (SC). Much work4,5 in the early
1970s showed how numerically computed classical trajectories
for multidimensional systems could be used semiclassically and
that such a theory provides an approximate description ofall
quantum effects in molecular dynamicssinterference (coher-
ence), tunneling, selection rules due to identical particle
symmetry, and quantization of bounded motionssince they all
arise ultimately from the superposition of probability amplitudes,
which is contained in this semiclassical description. Many
applications were carried out at that time, primarily to gas-phase
molecular collision problems, illustrating these ideas and
showing that the semiclassical description is often very good
even when quantum effects are quite large. Since, as noted
above, classical MD is now quite feasible even for complex
molecular systems, and since SC theory only requires classical
trajectories as input, it should therefore be possible in principle
to use SC theory to add quantum effects to classical MD
simulations of complex systems.

The first step toward changing “in principle” into “in practice”
is use of the initial value representation (IVR). Though the basic
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IVR ideasi.e., of converting the SC nonlinear boundary value,
or “root search” problem, into an integral over initial conditionss
was introduced many years ago,4b it is recent work6-15 by several
groups that has resurrected interest in it as a simulation tool.
The purpose of this paper is to review the basic IVR approach
and some of its recent applications, with special emphasis on
its potential for being able to describe quantum effects in
complex molecular systems, i.e., those with many degrees of
freedom. The ultimate goal of this work is to be able to
implement classical trajectory simulations in a way that can
incorporate quantum effects in a completely non-ad hoc fashion.

Section II first reviews the basic IVR idea and its connection
with older SC theory, and section III shows how the description
can be generalized to include the electronic degrees of freedom
in nonadiabatic processes on an equal footing with those of the
nuclei. Section IV then surveys recent applications of the SC-
IVR to simple systems (i.e., those with a few degrees of
freedom). For simple systems, one can compare SC-IVR results
with accurate quantum calculations, and these comparisons
provide strong evidence that the SC-IVR approach, to the extent
that it can be applied, provides an excellent description of
quantum effects in essentially all cases.

The main challenge, therefore, is one of implementation; i.e.,
can one in fact carry out SC-IVR calculations for molecular
systems with many degrees of freedom? Section V therefore
focuses explicitly on the evaluation of time correlation func-
tions,16 which are the quantities of dynamical interest for
complex systems. Of particular interest in this regard is the
forward-backward (FB) version of the IVR, which emerges
as the simplest version of the theory that is capable of describing
true quantum coherence/interference effects in molecular dy-
namics. Several recent applications of the FB-IVR approach
are discussed there, showing unequivocally that it is able to
describe quantum interference effects (from which all quantum
effects ultimately arise) in systems with many degrees of
freedom and also how these effects are (partially) quenched
when the coupling to “environmental” degrees of freedom is
sufficiently large.

II. Basic Initial Value Representation Idea

The basic IVR idea4b,5c,d,17can be illustrated by considering
a generic matrix element of the time evolution operator
(propagator)

which is the probability amplitude for a transition from state
n1 at time zero to staten2 at time t. Use of the standard
semiclassical (Van Vleck18) approximation for the coordinate
representation of propagator gives

whereSt(x2,x1) is the classical action along the trajectory that
goes fromx1 to x2 in time t

whereH(p,x) is the classical Hamiltonian of the system. To
apply eq 2.2 as written, one needs to solve a nonlinear boundary
value problem (the root search problem): ifx2(p1,x1) is the
coordinate at timet that evolves from the initial condition (p1,x1)
at t ) 0, then for a givenx1, one must find the values ofp1 that
satisfy

In general, there will be multiple roots, as indicated graphically
in Figure 1, and the summation in eq 2.2 is over all such roots.
The Jacobian factor in eq 2.2 is evaluated at the root of eq 2.4,
and one must take the appropriate branch of the square root in
eq 2.2 (i.e., the Maslov index).

In the older semiclassical work4,5 of the early 1970s, one
usually proceeded further by introducing semiclassical ap-
proximations for the wave functionsψn(x) in eq 2.2 (i.e., by
using action-angle variables) and also evaluating the integrals
over x1 andx2 via the stationary phase approximation (SPA).
These approximations, which formally introduce no additional
error to that already contained in the semiclassical approximation
to the coordinate matrix of the propagator, give the following
“primitive” semiclassical result for the matrix element

where (n,q) are the action-angle variables (that have replaced
the Cartesian variables (p,x)) and the actionSt(n2,n1) is

Here the initial and final action variables,n1 and n2sthe
classical counterpart to the quantum numbers of the initial and
final statessare the boundary values that determine the ap-
propriate classical trajectories, i.e., those that satisfy

The strategy of the IVR approach, however, isnot to perform
thex1 andx2 integrals in eq 2.2 via the SPA but rather to carry
them out numerically; i.e., one makes the semiclassical ap-
proximation to the propagator in the (Cartesian) coordinate (or

Kn2,n1
(t) ≡ 〈ψn2

|e-iĤt/p|ψn1
〉 )

∫ dx1∫ dx2 ψn2
(x2)*ψn1

(x1)〈x2|e-iĤt/p|x1〉 (2.1)

Kn2,n1
(t) ) ∑

roots
∫ dx1∫

dx2 ψn2
(x2)*ψn1

(x1)[(2πip)F|∂x2

∂p1
|]-1/2

eiSt(x2,x1)/p (2.2)

St(x2,x1) ) ∫0

t
dt′ p(t′)x3 (t′) - H(p(t′),x(t′)) (2.3)

Figure 1. Sketch of the final positionx2 of a classical trajectory as a
function of its initial momentump1 (for a fixed value of the initial
position x1), indicating that there may be more than one classical
trajectory (here two) that are determined by the boundary conditions
(x2,x1).

x2(p1,x1) ) x2 (2.4)

Kn2,n1
(t) ) ∑

roots[(-2πip)F|∂n2

∂q1
|]-1/2

eiSt(n2,n1)/p (2.5a)

St(n2,n1) ) ∫0

t
dt′ [-q(t′)n3 (t′) - H(n(t′),q(t′))] (2.5b)

n2(q1,n1) ) n2 (2.5c)
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momentum) representation and then carries out any further
manipulations with it fully quantum mechanically.19 An im-
portant simplification of eq 2.2sthe basic IVR “trick”sis then
possible: inside the integral overx1, the integration overx2 is
changed to that overp1

where the Jacobian comes from this change of integration
variables. As is clear from Figure 1, integration overp1

corresponds to integration overx2 and summation over all
multiples roots. Equation 2.2 thus becomes

where St(x1,p1) ≡ St(xt(x1,p1),x1) andxt(x1,p1) is now written
for x2(x1,p1).

Equation 2.7 is the simplest example of an IVR. The nonlinear
boundary value problem has been replaced by an integral over
the phase space of initial conditions, something that is more
amenable for application to systems of many degrees of freedom
(if Monte Carlo methods can be utilized for preforming the
phase space integration). It is also useful that the Jacobian factor
(∂xt/∂p1) now appears in the numerator in eq 2.7, rather than
the denominator as in eq 2.2, since it can go through zero for
various values of the integration variables. Equation 2.7 still
has all the interference structure that is the hallmark of
semiclassical theory; e.g., if the integrals in eq 2.7 were all
evaluated by the stationary phase approximation and WKB wave
functions were used forψ1 andψ2, the primitive semiclassical
result (eq 2.5) would be obtained, with interference between
different stationary phase trajectories, etc. The IVR also provides
an approximate description of classically forbidden processes
(“dynamical tunneling”20a), where there are no real stationary
phase contributions to the integral. In fact, this was the first
application4b of an IVR and the principle reason it was originally
introduced, i.e., as a way to treat classically forbidden processes
with real-valued trajectories.

Equation 2.7 can also be written in Dirac notation

where now (x0,p0) denotes the initial conditions for the
trajectory,xt ) xt(x0,p0) is the time-evolved position, etc., and
one can delete the initial and final states from eq 2.8 to have an
explicit representation of the propagator itself in terms of Dirac
position eigenstates

Equation 2.9 is the Cartesian coordinate IVR; if one proceeded
similarly but with momentum space wave functions, then the
(Cartesian) momentum version would be obtained

wherept(x0,p0) is the time-evolved momentum and the action
integral in momentum space is given by4d

A particularly useful contribution was made by Herman and
Kluk6a (HK) in showing that a similar expression pertains also
for coherent states|p0,x0〉, which are hybrid states, intermediate
between position and momentum eigenstates

HereSt is the same action integral as that in eq 2.3, and the HK
prefactor is

The coordinate space wave functions of the (Glauber) coherent
states21 are given by

and similarly for〈x|pt,xt〉; they become position eigenstates as
γ f ∞ and momentum eigenstates asγ f 0, in which limit eq
2.11 reduces to eqs 2.9 and 2.10, respectively. Their usefulness
is that they are localized in both coordinate and momentum
space. Coherent states are the “frozen Gaussian” version of the
semiclassical wave packet methodology developed by Heller20b,c

and fruitfully applied by him to many problems over the years.
It was this frozen Gaussian (i.e., fixedγ) model that motivated
Herman and Kluk in obtaining eq 2.11. Kay8a has also described
the generalization of eq 2.11, where the coherent state parameter
γ is a matrix and different for the initial and final coherent states.

III. Inclusion of Electronic Degrees of Freedom

It is not advocated (at least here) that one describes the
physical coordinates and momenta of electrons semiclassically,
but the collective degrees of freedom associated with a finite
manifold of electronic states can be included in the SC-IVR
approach by using the “classical electron analog” model of
Meyer and Miller (MM).22 If X andP denote the (Cartesian)
coordinates and momenta of the nuclei and (nk,qk), k ) 1, ...,N
the classical action-angle variables corresponding to a set of
N electron states, then MM’s classical Hamiltonian for the
complete nuclear-electronic system is

where{Hk,k′(X)} is the diabatic23 electronic Hamiltonian matrix

∑
roots

∫ dx2 ) ∫ dp1 |
∂x2(x1,p1)

∂p1

| (2.6)

Kn2,n1
(t) ) ∫ dx1 ∫ dp1 [|∂xt(x1,p1)

∂p1
|/

(2πip)F]1/2

eiSt(x1,p1)/pψn2
(xt)*ψn1

(x1), (2.7)

〈ψn2
|e-iĤt/p|ψn1

〉 ) ∫ dx0 ∫ dp0 [|∂xt(x0,p0)

∂p0
|/

(2πip)F]1/2

eiSt(x0,p0)/p〈ψn2
|xt〉〈x0|ψn1

〉 (2.8)

e-iĤt/p )

∫ dx0∫ dp0 [|∂xt(x0,p0)

∂p0
|/(2πip)F]1/2

eiSt(x0,p0)/p|xt〉〈x0| (2.9)

e-iĤt/p )

∫ dx0 ∫ dp0 [|∂pt(x0,p0)

∂x0
|/(-2πip)F]1/2

eiS̃t(x0,p0)/p|pt〉〈p0|
(2.10a)

S̃t(x0,p0) ) ∫0

t
dt′ [-x(t′)p3 (t′) - H(p(t′),x(t′))] (2.10b)

e-iĤt/p )

(2πp)-F∫ dx0 ∫ dp0 Ct(x0,p0) eiSt(x0,p0)/p|pt,xt〉〈p0,x0|
(2.11a)

Ct(x0,p0) ) |1
2(∂xt

∂x0
+

∂pt

∂p0
+ pγ

i

∂xt

∂p0
+ i

pγ
∂pt

∂x0
)|1/2 (2.11b)

〈x|p0,x0〉 ) (γπ)F/4
e-(γ/2)|x-x0|2 eip0(x-x0)/p (2.12)

H(P,X,n,q) )
P2

2µ
+ ∑

k)1

N

nkHkk(X) +

∑
k,k′)1
k′*k

N

Hkk′(X)[(nk +
1

2)(nk′ +
1

2)]1/2

cos(qk - qk′) (3.1)
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(assumed here to be real) which characterizes theN electronic
states; it is assumed to come from an “honest” quantum
mechanical electronic structure calculation for fixed nuclear
coordinatesX. MM used this Hamiltonian, eq 3.1, within the
“quasiclassical” model:24 i.e., the initial conditions were set to
quantized initial values (ni(t1) ) 1 if statei is the initial electronic
state,nk(t1) ) 0 for k * i, with all angle variablesqk(t1) chosen
randomly from the interval (0,2π), and similarly for the bound
nuclear degrees of freedom), and the final action variables were
histogrammed to determine the distribution of final electronic
(and nuclear) states. The primary motivation for this was to
have an approach which treated electronic and nuclear dynamics
on an equal footing. A variety of applications in the early 1980s
gave reasonably good results for a variety of electronically
nonadiabatic processes (F*+ H2 (j ) 0) f F + H2 (j ) 2),25

Br* + H2 (V ) 0) f Br + H2 (V ) 1),26 Na + I f Na+ + I-,27

...). It is appreciated, though, that histogramming an action
variable into quantum number “bins”, when it only spans a range
from -1/2 to 3/2, is very crude at best, and the model thus does
not always give accurate results.28

One now proposes to upgrade the description to the semiclas-
sical level,29 and from the discussion in section II, it is clear
that one first transforms from the electronic action-angle
variables in eq 3.1 to the corresponding Cartesian-like electronic
coordinates and momenta

The classical Hamiltonian30 thus becomes

where it is seen that the electronic degrees of freedom appear
as harmonic oscillators, one for each electronic state. The
coordinate space wave functions for theseN electronic states
are thus given by

whereφ0(x) and φ1(x) are the ordinary one-dimensional har-
monic oscillator wave functions for the ground and first excited
state. Since the sum of theN quanta,∑k)1

N nk, is a conserved
quantity (both classical and quantum mechanically) for the
Hamiltonian of eq 3.3, this is a complete set of states in the
manifold∑k)1

N nk ) 1; i.e., theN “electronic” states correspond
to one quantum of excitation (essentially the probability) being
in one of theN electronic modes.

It is interesting to note that if the Hamiltonian of eq 3.3 were
upgraded to a full quantum description, then it provides an exact
representation of the full nuclear-N electronic state system. This
is most directly apparent from the deviation given by Stock and
Thoss31 and can also be readily verified by constructing the
matrix of the electronic oscillator Hamiltonian for fixed nuclei

in the basis of theN states of eq 3.4; an elementary calculation
shows that

and since the matrix of the electronic oscillator Hamiltonian is
identical to the original diabatic electronic matrix, the resulting
quantum mechanics must be the same. At the full quantum level
of description, therefore, eq 3.3 is not an approximation to the
electronic-nuclear system, but rather a particular representation
of it.31 The approximation is that we now proceed to treat it
semiclassically.

It is a straightforward matter to apply the SC-IVR approach
of section II to the classical Hamiltonian of eq 3.3. Ifø1(R)
andø2(R) denote the initial and final nuclear wave functions,
then the SC-IVR expression for a typical vibronic (i.e.,
electronic-nuclear) transition amplitude is the generalization of
eq 2.7

wherext(x1,p1,X1,P1) and Xt(x1,p1,X1,P1) are the coordinates
at time t that evolve along the classical trajectory with the
indicated initial conditions andSt the corresponding action
integral. The classical trajectories here are for the full set ofN
electronic andF nuclear degrees of freedom (in the MM spirit)
obtained from the classical Hamiltonian of eq 3.3. As noted
before, this approach has the desirable feature of treating the
electronic and nuclear degrees of freedom on an equal basis,
thus avoiding any inconsistencies that arise in trying to mix a
quantum description of some degrees of freedom with a classical
description of others.

It is also interesting to note that the above SC-IVR approach
includes the Pechukas model32 for treating electronically nona-
diabatic processes. In this approach, one begins with the
(formally exact) Feynman path integral expression for the
electronic-nuclear time evolution operator

and imagines first evaluating (exactly) the path integral over
the electronic degrees of freedom, whereby the vibronic
amplitude becomes

where K2,1[X(t)] is the electronic transition amplitude as a
functional of the nuclear pathX(t). Up to this point, the
formulation is exact, but Pechukas now evaluates the nuclear
path integral semiclassically, i.e., via the functional version of
the stationary-phase approximation. This determines an effective
nuclear trajectory. The SC-IVR approach, howeversif it were

xk ) xnk + 1
2

cosqk (3.2a)

pk ) -xnk + 1
2

sinqk (3.2b)

H(P,X,p,x) )
P2

2µ
+ ∑

k)1

N 1

2
(pk

2 + xk
2 - 1)Hkk(X) +

∑
k<k′)1

N

(pkpk′ + xkxk′)Hkk′(X) (3.3)

Φk(x) ) φ1(xk) ∏
k′)1
k′*k

N

φ0(xk′) (3.4)

Hel(p̂,x̂;X) ) ∑
k)1

N 1

2
(p̂k

2 + x̂k
2 - 1)Hkk(X) +

∑
k<k′)1

N

(p̂kp̂k′ + x̂k̂xk′)Hkk′(X) (3.5a)

〈Φk|Hel|Φk′〉 ) Hkk′(X) (3.5b)

S2,1(t) ) ∫ dx1 dX1 ∫ dp1 dP1 [∂(xt,Xt)

∂(p1,P1)
/(2πip)F+N]1/2

ø*2(Xt)Φ*k2
(xt)Φk1

(x1)ø1(X1) eiSt(x1,p1,X1,P1)/p (3.6)

〈x2X2|e-iHt/p|x1X1〉 ) ∫X1

X2 DX(t) ∫x1

x2 Dx(t) eiS[x(t),X(t)]/p (3.7)

S2,1(t) ) ∫ dX2 ∫ dX1 ø2(X2)*ø1(X1) ∫X1

X2

DX(t) exp[ i
p
∫0

t
dt′ 1

2
µX4 (t′)2] K2,1[X(t)] (3.8)
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implemented in this two stage fashionswould generate the
electronic transition amplitudeK2,1[X(t)] exactly; this is because
for a fixed nuclear trajectory the electronic Hamiltonian of eq
3.5a is a time-dependent quadratic Hamiltonian, for which the
semiclassical approximation is exact. The SC-IVR model then
does a better job of treating the nuclear degrees of freedom by
using the IVR rather than the stationary phase approximation.
In practice, of course, one does not implement the SC-IVR
model in this two-stage manner, but rather treats the nuclear
and electronic dynamics simultaneously. One (desirable) con-
sequence of this is that there are no nonlocal (in time) forces32

to deal with.

IV. Applications to Simple Systems

There have been a number of applications of the SC-IVR
approach by a number of different research groups to a variety
of simple systems (i.e., those with a small number of degrees
of freedom) that illustrate its usefulness and the typical accuracy
one can expect. Here we discuss a selected set of these, which
have used either the coordinate-space (i.e., Van Vleck) IVR or
the coherent-state (Herman-Kluk) version.

Eigenvalue spectra and photodissociation cross sections
involve a diagonal matrix element of the microcanonical density
operator

which can be expressed as the Fourier transform of the matrix
element of the propagator

The matrix element〈ø|e-iĤt/p|ø〉 is thus evaluated by the SC-
IVR procedure, eq 2.7 or 2.11, and then integrated over time
as in eq 4.1b to obtainI(E). For a bounded molecular system,
the formal expression forI(E) is

where{En} and{|ψn〉| are the eigenvalues and eigenfunctions
of Ĥ, so that peaks inI(E) identify eigenvalues. (Typically, a
convergence factor, e.g., exp[-(1/2)∆E2t2/p2], is included in the
time integral to accelerate its convergence, and the delta function
peaks of eq 4.2 become Gaussians, exp[-(1/2)(E - En)2/∆E2].)

Tomsovic and Heller9c have calculated such eigenvalue
spectra for the two-dimensional stadium billiard (using the Van
Vleck IVR) and found excellent results, even up to very highly
excited states for which the level density becomes large. (This
required the use of some very clever techniques for carrying
out the phase space integral that are special for billiard (i.e.,
hard wall) systems.) This example shows that the semiclassical
matrix element of the propagator can be accurate for long time,
much longer then had previously been expected, and even when
the classical dynamics is highly chaotic.

The eigenvalue spectrum of the HCl dimer (treating each
monomer as a rigid rotor) has been calculated by Sun and
Miller,10i specifically, the lowest few vibrational eigenvalues
of each molecular symmetric (A+, A-, B+, and B-). Agreement
with quantum mechanical calculations (with the same potential
energy function) was quite good (to 1-2 cm-1), even for the
tunneling splitting associated with the symmetrical hydrogen
bond flipping, i.e., Cl-H‚‚‚Cl-H f H-Cl‚‚‚H-Cl (∆EQM )
16 cm-1, ∆ESC ) 18 cm-1).

Photodetachment spectra (i.e., photoelectron spectra of nega-
tive ions) have been calculated by Brewer, Hulme, and
Manolopoulos11c for I-(Ar)n, n ) 2-6; this is essentially the
I(E) of eq 4.1, where|ø〉 is the initial (ground) vibrational state
of the negative ion andĤ the Hamiltonian for the (dissociative)
neutral molecular system. Very good results were obtained, and
it was impressive that such a relatively large system (up to 15
degrees of freedom) could be treated (though many of these
were very weakly coupled harmonic modes).

An example involving electronically nonadiabatic dynamics,
i.e., the electronic-nuclear Hamiltonian of section III, was the
photodissociation of ozone treated by Batista and Miller.10gHere
|ø〉 is the ground vibrational state of ozone (in its ground
electronic state), and the HamiltonianĤ consists of two excited
electronis states, coupled through a conical intersection, along
with the nuclear degrees of freedom. Agreement of the SC-
IVR results with quantum calculations33 for the same system
were very good. Similar calculations by Coronado et al.10v for
the photodissociation of ICN, involving nonadiabatic dynamics
of two coupled excited electronic states, also gave excellent
agreement with quantum calculations; a very impressive cal-
culation of this type for photoexcitation of pyrazine to the
excited S2 state, which is coupled to the S1 state via a conical
intersection, was carried out by Thoss et al.10w including all 24
vibrational degrees of freedom, resulting in very good agreement
with quantum multiconfiguration time-dependent Hartree (MCT-
DH) calculations.

State-to-state scattering calculations are also possible by using
the formal quantum mechanical expression for theS-matrix in
terms of the propagator4d

where{φn(r)} is the asymptotic internal eigenfunctions of the
collision partners andR the (Jacobi) coordinate for relative

translational motion;E is the total energy,ki ) x2µ(E-εni
)/p2

the translational wavevectors, andVi ) pki/µ the translational
velocities. This can be put into standard IVR form by adding
the factorδ(R2 - Rf) to the integrand and integrating overR2,
making the IVR transformation ala´ eq 2.6, and then doing the
t-integral by virtue of the factorδ(Rt - Rf), giving finally

whereR0 ) R1 and t is determined by the time thatRt ) R2.
Skinner and Miller10o carried out such calculations for the
standard model of inelastic scattering, the collinear He+ H2

system first studied by Secrest and Johnson34 many years ago.
Agreement with the correct quantum results is essentially
quantitative, following the interference structure in the transition
probabilitiesPn2,n1 ≡ |Sn2,n1|2 as a function of final vibrational
quantum number.

Garashchuk, Grossmann, and Tannor12 have carried out
similar scattering calculations (but using the HK coherent state
IVR) for the collinear H+ H2 f H2 + H reaction, here the
primary interest being to see how well the SC-IVR approach
can describe the resonance structure in the energy dependence
of the reaction probability. It has long been realized that,35,36

from a semiclassical point of view, resonance structure is an

Sn2,n1
(E) ) -xV1V2 e-i(k1R1+k2R2)∫0

∞

dt eiEt/p〈R2φn2
|e-iĤt/p|R1φn1

〉 (4.3)

Sn2,n1

IVR (E) ) -e-i(k1R1+k2R2)∫ dr0 ∫ dp0 ∫ dP0 [| ∂(Rt,r t)

∂(P0,p0)
|/

(2πip)F]1/2

ei(Et+St)/pφn2
(r t)*φn1

(r0)µxV1V2/Pt (4.4)

I(E) ≡ 〈ø|δ(E - Ĥ)|ø〉 (4.1a)

I(E) ) 1
πp

Re∫0

∞
dt eiEt/p〈ø|e-iĤt/p|ø〉 (4.1b)

I(E) ) ∑
n

|〈ø|ψn〉|2δ(E - En) (4.2)
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interference effect between different trajectories that are tem-
porarily trapped in the collision complex (just as discrete
eigenvalues themselves are the result of interference between
different trajectories that are trapped forever in a bounded
molecular system). As such, they should be describable within
the SC-IVR approach, and it is indeed encouraging to see that
the resonance structure from Garashchuk et al.’s semiclassical
calculations is in very good agreement with the correct quantum
structure. It is another important illustration of the fact that the
SC-IVR model is capable of providing a usefully accurate
description of quantum effects in chemical dynamics.

Application of the SC-IVRs of section II, eq 2.9 or 2.11, to
compute spectral densitiesI(E) (eq 4.1),S-matrixes (eq 4.3), or
any other quantum expression involving the propagator, is thus
very straightforward in principle. The “only” computational
difficulty is that it involves evaluating a multidimensional
integral (over the phase space of initial conditions) of an
oscillatory integrand. To accomplish this, the applications above
have all used variations of “filtering” or stationary phase Monte
Carlo methods37 to dampen the oscillations of the integrand.
Consider, for example, a generic integral of the form

The modified Filinov approach37b replaces this by

The exponential factor, exp(-(c/2)|(∂S/∂x)|2), which can be used
for Monte Carlo importance sampling, favors the regions of
space near the points of stationary phase (which are determined
by (∂S/∂x) ) 0). In the limit that the parameterc f ∞, eq 4.6
in fact yields the stationary phase approximation to the integral

whereF is the dimension of the integral and{xk} the points of
stationary phase. In the limitc ) 0, eq 4.6 reverts to the original
integral, eq 4.5, but with poor Monte Carlo statistics. The
strategy is thus to evaluate eq 4.6 for finite c, extrapolating to
values small enough that the c≈ 0 limit can be determined.

V. Applications to Complex Systems; Time Correlation
Functions

To deal with molecular processes for truly complex systems,
e.g., chemical reactions, molecular energy transfer, photodis-
sociation (or detachment) in clusters, liquids, solids, proteins,
etc., it is useful to focus directly on the time correlation function
relevant to the quantity of interest. These are of the form16

where operatorÂ typically involves all the degrees of freedom
of the molecular system (e.g., it usually involves the Boltzmann
operator e-âĤ), Ĥ is the Hamiltonian of the complete molecular
system, but Bˆ typically involves only a few degrees of freedom
(e.g., those of the solute). For example, the reactive flux
correlation function,38 the long time limit of which gives the
rate constant for a chemical reaction, corresponds to eq 5.1,
with operatorsÂ and B̂ given by

whereF̂ is the flux operator

andh(s(q̂)) the Heaviside function that is 1(0) on the product
(reactant) side of the “dividing surface”, defined bys(q) ) 0,
which separates reactants and products.

Straightforward use of the SC-IVR for each of the time
evolution operators in eq 5.1 thus leads to a double phase space
average,15a

where here the Van Vleck (coordinate space) IVR has been used,
and coordinates and momenta for all degrees of freedom are
denoted by (q,p), with qt ) qt(p0,q0), qt′ ) qt(p0′,q0′), St )
St(p0,q0), and St′ ) St(p0′,q0′). The interference between the
trajectories with different initial conditions is the source of
computational difficulty, but it is also the source of the quantum
effects, so one must deal it.

A. Linearization Approximation. An approximate way to
deal with the oscillatory integrand in the double phase space
average (eq 5.3) is to assume that the only important contribution
comes when the two trajectories are infinitesimally close to one
another. This (admittedly drastic!) approximation is implemented
by changing integration variables from (p0,q0) and (p0′,q0′) to

and expanding the magnitude and phase of the integrand to first
order in ∆p0 and ∆q0; the result gives the classical Wigner
approximation

wherept ) pt(pj0,qj0), qt ) qt(pj0,qj0), and Aw and Bw are the
Wigner functions39 corresponding to these operators

and similarly forBw. Equation 5.5, which we have referred to
as the linearized approximation10j of the full SC-IVR expression
(LSC-IVR), is thus effectively a classical calculation with the
Wigner functions replacing the classical functions; i.e., ifAw-
(p,q) and Bw(p,q) were replaced byACL(p,q) and BCL(p,q),
respectively, then eq 5.5 becomes precisely the classical
expression for the correlation function. The idea of carrying
out an essentially classical calculation with Wigner functions
has arisen many times in the past40,15b from different formula-
tions; it is interesting here to see how it emerges as an
approximation to the SC-IVR. (A similar kind of linearization

I ) ∫ dx A(x) eiS(x) (4.5)

I(c) ) ∫ dx A(x) eiS(x) e-(c/2)|(∂S/∂x)|2|I + ic
∂

2S
∂x ∂x

|1/2 (4.6)

ISPA ) ∑
k

A(xk) eiS(xk)[(2πi)F/| ∂
2S

∂x∂x
|]1/2

(4.7)

CAB(t) ) tr[Â eiĤt/pB̂ e-iĤt/p] (5.1)

Â ) e-âĤ/2 F̂ e-âĤ/2 (5.2a)

B̂ ) h(s(q̂)) (5.2b)

F̂ ) i
p
[Ĥ,h(s(q̂))] (5.2c)

CAB(t) ) ∫ dp0 ∫ dq0 ∫ dp0′ ∫ dq0′ 〈q0|Â|q0′〉 ×

〈qt′|B̂|qt〉 ei(St-St′)/p|∂qt

∂p0
|1/2|∂qt′

∂p0′
1/2/(2πp)F (5.3)

pj0 ) 1
2
(p0 + p0′)

∆p0 ) p0′ - p0

qj0 ) 1
2
(q0 + q0′)

∆q0 ) q0′ - q0 (5.4)

CAB(t) = (2πp)-F ∫ dpj0 ∫ dqj0 Aw(pj0,qj0)Bw(pt,qt) (5.5)

Aw(p,q) ) ∫ dq′ e-ipq′/p〈q + q′/2|Â|q - q′/2〉 (5.6)
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approximation was also used in the older SC framework to
obtain dipole-dipole correlation functions for spectral line
shapes.5e)

Because the LSC-IVR/classical Wigner model is so simple,
it has been applied to several benchmark model problems to
illustrate what it can and cannot do. Figure 2, for example, shows
the flux correlation function (cf. eq 5.2) for a model of an
isomerization reaction in a condensed phase medium, namely,
a double-well potential coupled to a bath of harmonic oscillators.10j

Figure 2a is for the case of strong coupling to the bath, for
which there is no recrossing flux (and therefore for which
transition state theory (TST) is a good approximation), and
Figure 2b is for the case of weak coupling. In the latter case,
flux recrosses the dividing surface several times before the
products are thermalized; TST is of course not valid in this
regime. The rate constants (the long time limit of the correlation
function) given by the LSC-IVR/classical Wigner model are in
excellent agreement with accurate quantum results in both of
these regimes.

Figure 3 shows an example using the classical model of
electronically nonadiabatic processes summarized in section
III. 10l It is a model of an electron-transfer reaction (or any other
“radiationless transition”) in a condensed phase, specifically a
two-state system coupled to a harmonic bath (often referred to
as the “spin-boson” model). Figure 3a shows the population
relaxation for weak coupling to the bath so that the population
hops back and forth a number of times before thermalization,
and Figure 3b shows the case of strong coupling, for which
these oscillations do not occur because the system is thermalized

too quickly. Again, the LSC-IVR/classical Wigner approxima-
tion gives results in very good agreement with the correct
quantum results (also shown in Figure 3).

The LSC-IVR/classical Wigner model thus works quite well
for these examples, and there should be many realistic molecular
systems for which it does a good job. Unfortunately, though, a
more detailed analysis10k shows that it cannot describe quantum
coherence effects (there can also be coherent motion classically,
which it does of course describe correctly). An application of
the LSC-IVR to inelastic scattering,10o for example, showed it
to give a poor description of interference effects in the product
state distribution (while the full SC-IVR treatment describes
them extremely well). Use of the Wigner function for the
Boltzmannized flux operator (cf. Eq(5.2a)) does incorporate
some quantum effects in the flux correlation function: specif-
ically, the quantum behavior is described well for short time,t
< pâ; the longer-time behavior, however, is strictly that given
by classical mechanics. (Quantum effects in the long time
dynamics were thus not important for the two examples
discussed above,10j,10l but this is not always the case (vide infra).)
Because it describes the short time quantum behavior well, the
LSC-IVR/classical Wigner model can serve as the basis for a
quantum transition state theory (because TST is based on the
short time behavior of the flux correlation function); Pollak et
al.41 have pursued idea this quite fruitfully.

B. Forward-Backward IVR. To go beyond the linearized
SC-IVR or classical Wigner approximation, yet avoid having
to deal with the double phase space average in eq 5.3, we have
utilized an idea suggested by some interesting work of Thomp-
son and Makri,42a,b namely, to combine the two propagators
e-iĤt/p, which propagates from 0 tot, and e+iĤt/p, which propages
from t to 0, into one semiclassical propagation from 0 to 0;
i.e., since the SC-IVR makes the semiclassical approximation
from 0 to t and fromt to 0, one might as well also make itat
time t and have just a single SC-IVR for the Heisenberg operator

Figure 2. Reactive flux correlation function for a double well potential
coupled to a bath of harmonic oscillators: (a) strong and (b) weak
coupling to the bath, respectively; from ref 10j.

Figure 3. Decay of the population difference,D(t) ) P1(t) - P2(t),
for a two-(electronic) state system coupled to a bath of harmonic
oscillators (where state 1 is the initial state): (a) weak and (b) strong
coupling to the bath; from ref 10l.
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The complicating feature, of course, is that operatorB̂ stands
between the forward and the backward propagators in eq 5.7,
so that one must learn how to deal with it semiclassically.
(Thompson and Makri used the forward-backward42a,bidea to
construct an influence functional (semiclassically) for an an-
harmonic “bath” coupled to a quantum “system”. The above
“complicating feature” does not arise in this case because the
propagators in the influence functional involve only the bath
degrees of freedom and operatorB̂ only those of the system).

The key idea10m,q is to write operatorB̂ as an intergral
transform of an exponential operator, for which a semiclassical
treatment is straightforward. For the reactive flux correlation
function, for example, operatorB̂ is

since it is a function of coordinates only through the one
collective variables(q), the appropriate integral transform is a
1-d Fourier transform

where

(In practice one can setε ) 0 since the other factors in the
integrand are zero forps ) 0.) The coherent state IVR is then
used for the product of operators

which can be thought of as three successive propagators. The
result (which can be derived in several ways10m,q,u) has the
standard Herman-Kluk form of eq 2.11

where (q0′,p0′) are the final coordinates and momenta that result
from the trajectory which begins att ) 0 with initial conditions
(q0,p0), evolves via the full (classical) HamiltonianH until time
tsyielding coordinates and momenta (qt,pt)sthen has the
momenta changed according to

and is then propagated backward in time tot ) 0. The action
integralS0 is

and the HK prefactorC0 involves the same derivatives of final
values with respect to initial ones as in eq 2.11b.

With the intergral transform for operatorB̂ (eq 5.8b) and the
FB-IVR for the product of exponential operators (eq 5.9), the
reactive flux correlation functionsor any correlation function
with operatorB̂ of the formB(s(q̂))sis given by

There is thus asinglephase space integral over all degrees of
freedomsthe same level of complexity as for a completely
classical calculationsplus a one-dimensional integral over the
“jump” parameterps, which is the magnitude of the momentum
jump at timet. It is hard to imagine anything simpler than this
that is capable (see below) of describing true quantum coherence
features. Note also that the direction of the momentum jump is
a normal to the dividing surface defined bys(q) ) 0; thus, in
a complex molecular systemse.g., a liquid, a protein, etc.sthe
(many) degrees of freedom that are not directly coupled to the
reaction coordinate will experience no momentum jump at time
t and thussto the extent that they are not coupled to the reaction
coordinate motionsback-integrate in the backward stept f 0.
Their contribution to the net actionS0, eq 5.9c, will thus cancel
out; only the reaction coordinate and those degrees of freedom
significantly coupled to it contribute to the action. This self-
cancellation of the oscillatory character of the integrand induced
by the combined forward-backward trajectory is its most
important feature. More general operatorsB̂, i.e., those that
involve momentum as well as coordinate operators, can be
treated by a generalization10q of the above Fourier transform
(the Weyl-ordered product representation).

It is also easy to see what approximation to eq 5.10 causes it
to revert to the essentially classical result: if one assumes that
only small values ofps contribute to the integral over it, then
one can make a first-order cumulant approximation to theps

dependence of the integrand

(sinceC0(p0,q0;0) ) 1, S0(p0,q0;0) ) 0). The diagonal coherent-
state matrix element of an operator is its Husimi function43

which is similar (though not identical) to the Wigner function,
and the parameterat(p0,q0) is essentially the classically evolved
function st(p0,q0); bringing the∫ dps inside the phase space
average thus inverts the Fourier transformB̂(ps), to give

which one might call the classical Husimi model; it has the
same form as the classical Wigner model of eq 5.5 but with
Husimi functions (Husimi functions arise naturally in a coherent-
state representation, and Wigner functions in a coordinate-space
representation), and is also seen to arise from making a
linearization approximation, here a linearization of the integrand
in the jump parameterps.

Finally, we note that there is another way of implementing
the forward-backward idea for the complete molecular sys-
tem: the Heisenberg time evolved operatorB̂ of eq 5.7 can
also be written as

and the above forward-backward SC-IVR used to obtain the
product of exponential operators

B̂H(t) ≡ eiĤt/pB̂ e-iĤt/p (5.7)

B̂ ) h[s(q̂)] (5.8a)

B̂ ) ∫-∞

∞
dpsB̃(ps) eipss(q̂)/p (5.8b)

B̃(ps) ) lim
εf0

[2πi(ps - iε)]-1 (5.8c)

eiĤt/p eipss(q̂)/p e-iĤt/p

eiĤt/p eipss(q̂)/p e-iĤt/p ) (2πp)-F∫ dp0 ∫
dq0 C0(q0,p0;ps) eiS0(q0,p0;ps)/p|p0′,q0′〉〈p0,q0| (5.9a)

pt f pt + ps

∂s(qt)

∂qt
(5.9b)

S0(p0,q0) ) ∫0

t
dt′ (ptq3 t - H) + pss(qt) + ∫t

0
dt′ (ptq3 t - H)

(5.9c)

CAB(t) ) ∫-∞

∞
dps B̂(ps)(2πp)-F∫ dp0 ∫

dq0 C0(p0,q0;ps) eiS0(p0,q0;ps)/p〈p0,q0|Â|p0′,q0′〉 (5.10)

〈p0,q0|Â|p0′,q0′〉C0(p0,q0;ps) eiS0(p0,q0;ps)/p =

〈p0,q0|Â|p0,q0〉 eipsat(p0,q0)/p (5.11)

AH(p0,q0) ≡ 〈p0,q0|Â|p0,q0〉 (5.12)

CAB(t) = (2πp)-F∫ dp0 ∫ dq0 AH(p0,q0)B(st(q0,p0)) (5.13)

B̂H(t) ≡ eiĤt/pB̂ e-iĤt/p ) -i
d
dλ

eiĤt/p eiλB̂ e-iĤt/p, λ ) 0
(5.14a)

Feature Article J. Phys. Chem. A, Vol. 105, No. 13, 20012949



just as above, leading to a momentum jump (ifB̂ ) B(s(q̂)) at
time t given by

Sun and Miller10q tried this derivative form of the Heisenberg
operator, and Makri et al.42 have pursued it more fully. The
problem is that sinceλ is infinitesimal (and ultimately set to
zero), the momentum jump at timet vanishes so that the
backward trajectory exactly retraces the forward trajectory.
There is thus no possibility of interference effects between
distinct trajectories, very much the same shortcoming as that
of the linearized (classical Wigner) approximation. The effective
equivalence of the derivative form of the FB-IVR and the
linearized approximation has been seen in applications42d and
can also be shown algebraically. Thus, if one explicitly
differentiates theλ-dependence of the FB-IVR expression for
the quantity in eq 5.14 and then setsλ to zero, the following
expression for the correlation function is obtained

whereAH is the Husimi function (eq 5.12). Noting the relation
between the Wigner and Husimi distributions

one sees that eq 5.16 is indeed approximately the same as the
classical Wigner (linearized) model

C. Applications of the FB-IVR. The form of the FB-IVR
for the correlation function suggests a natural way to proceed
with a calculation. For example, for operatorsB̂ of the form
B(s(q̂)), eq 5.10 for the correlation function can be written as

whereAH(p0,q0) is the Husimi distribution function correspond-
ing to operatorÂ. The Husimi distribution provides the natural
weighting function for a Monte Carlo average over initial
conditions. FB-IVR calculations have been carried out this way
for the reactive flux correlation function for a system consisting
of a one-dimensional double well potential coupled to up to 40
vibrational degrees of freedom,10uwith excellent agreement with
essentially exact quantum (path integral) calculations for this
system. A full-dimensional treatment of hydrogen atom transfer
in hydroxyphenyl oxazole10x (51 vibrational degrees of freedom)
has also been successfully treated this way. It has also been
applied to the femtosecond photodetachment of I2

- (which
involves the evaluation of optical response functions by the FB-
IVR)10p and also to molecular energy transfer distribution
functions10t (i.e., P(E′rE)). There is also a recent very suc-

cessful FB-IVR calculation by Ovchinnikov et al.15c of the
resonance Raman spectrum of I2 in a cluster of up to 10 Xenon
atoms.

To have a simple example, however, that can clearly
distinguish between which theoretical approaches can, and
cannot, describe true quantum coherence effects, we have
considered the textbook paradigm of quantum coherence
phenomena, namely transmission through a “two-slit” potential.10y

Figure 4 shows the sketch of a contour plot of the 2-d potential
energy surfaceV(x,y) for this scattering problem. The initial
stateφ(q)[q)(x,y)] is a coherent state

with qi localized in the region to the left of the barrier (x < 0)
and momentumpi in the x-direction. What is calculated is the
probability P(θ) of the particle emerging to the right side of
the barrier (x > 0) at angleθ. With operatorsÂ andB̂ defined
by

the correlation forCAB(tf∞) is P(θ)

and the limit of larget is taken. The FB-IVR is used to evaluate
the matrix element in eq 5.22b, and the general expression (eq
5.19) in this case becomes

where FH is the (normalized) Husimi distribution function
corresponding to the initial state

One thus performs a Monte Carlo average of the quantity in
curly brackets in eq 5.23a using the Husimi distribution of eq
5.23b as the sampling function.

eiĤt/p eiλB̂ e-iĤt/p (5.14b)

pt f pt + λB′(s(qt))
∂s(qt)

∂qt
(5.15)

CAB(t) ) (2πp)-F∫ dp0 ∫ dq0 B(s(qt))[1 - 1
4(γp2 ∂

2

∂p0
2

+

1
γ

∂
2

∂q0
2)]AH(p0,q0) (5.16)

Aw(p0,q0) ) exp[- 1
4(γp2 ∂

2

∂p0
2

+ 1
γ

∂
2

∂q0
2)]AH(p0,q0) (5.17)

CAB
Wigner(t) ≡ (2πp)-F∫ dp0 ∫ dq0 B(s(qt))Aw(p0,q0) (5.18)

CAB(t) ) ∫-∞

∞
dps B̃(ps)(2πp)-F∫ dp0 ∫ dq0 AH(p0,q0) ×

{C0(p0,q0;ps) eiS0(p0,q0;ps)/p 〈p0,q0|Α̂|p0′,q0′〉/〈p0,q0|Α̂|p0,q0〉}
(5.19)

Figure 4. Contour sketch of the two-slit potential energy surface,
V(x,y), with the initial state|φ〉 depicted; from ref 10y.

|φ〉 ) |piqi〉 (5.20)

Â ) |φ〉〈φ| (5.21a)

B̂ ) δ((θ - θ(q̂)) (5.21b)

P(θ) ) 〈φ|eiĤt/pδ((θ - θ(q̂)) e-iĤt/p|φ〉) (5.22a)

) (2πp)-1∫-∞

∞
dpθ e-ipθθ/p〈φ|eiĤt/p eipθθ(q̂)/p e-iĤt/p|φ〉

(5.22b)

P(θ) ) (2πp)-1∫ dpθ e-ipθθ/p∫ dp0 ∫ dq0 FH(p0,q0)

{〈φ|p0′,q0′〉
〈φ|p0,q0〉

C0(p0,q0:pθ) eiS0(p0,q0;pθ/p} (5.23a)

FH(p0,q0) ) (2πp)-F|〈p0,q0|φ〉|2 ) (2πp)-F|〈p0,q0|pi,qi〉|2

) (2πp)-F exp[-γ
2

(q0 - qi)
2 - (p0 - pi)

2/2p2γ]
(5.23b)
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Figure 5 showsP(θ) given by the FB-IVR, compared to the
exact quantum result and also the result of the LSC-IVR/Wigner
model. One sees that the latter approximation is not able to
describe the interference structure (i.e., diffraction) while the
FB-IVR can do so, and the reason is rather obvious: the LSC-
IVR implicitly assumes that the forward and backward trajec-
tories are infinitesimally close to each other (the same as the
small pθ approximation), so there is only a contribution from a
trajectory that goes through one of the holes and comes back
through the same hole. (Note that the final phase point (p0′,q0′),
as well as the initial one (p0,q0), must not be too far from (pi,qi);
cf. eq 5.23b.) The FB-IVR, however, integrates over all values
of the jump parameter so that some trajectories that go through
one of the holes make the appropriate jump (at timet) to come
back through the other hole (and overlap the initial state). The
classical Wigner or Husimi (i.e., linearized) approximations can
never describe this effect, which is the hallmark of semiclassical
theory (i.e., interference between different classical trajectories).

This example becomes even more interesting when a har-
monic bath is introduced that is coupled to they-degree of
freedom; i.e., the two slits are “jiggled” vertically in Figure 4
by interaction with these degrees of freedom. OperatorÂ then
becomes

where Ĥb is the Hamiltonian of the harmonic bath andZ )
tr(e-âĤb). Equation 5.23a then generalizes to

where

Figure 6 showsP(θ) so calculated10y for various values of
the bath temperature. As expected, as the temperature of the
bath is increased, the interference is progressively quenched.
This is an example of the popularly discussed phenomenon of

“decoherence” caused by coupling to an “environment”, but it
is no different from many earlier examples of quenching44,45of
interference features when some degrees of freedom (here the
harmonic bath) are averaged over.

The important thing is that the FB-IVR is able to describe
true quantum interference phenomena (and its quenching)! And
the calculation is not so much more difficult than a completely
classical one; i.e., in both, one must average over the phase
space of initial conditions, and in the FB-IVR, one must also
integrate over a one-dimensional (in these examples) jump
parameter.

Another dramatic illustration of the ability of the FB-IVR to
describe quantum coherence effects is provided by considering
the time-dependent probability distribution of a vibrational
coordinate (i.e., a diatomic molecule) in a condensed phase
environment (e.g., a liquid, a cluster, etc.), modeled here again
by the ubiquitous harmonic bath.10z The quantity of interest is
Pt(r)

which (analogous toP(θ) above) corresponds to the correlation
function C(t) with

(Note thatPt(r) would simply be the square modulus of the
time-dependent wave function,|ψ(r,t)|2, for an isolated diatomic
molecule.) With the delta function, eq 5.26c, represented in the
usual way

the result for the distribution functionPt(r) is the same as eq
5.24 (with θ f r, pθ f pr, etc.).

Figure 7 showsPt(r) first for the diatomic (a Morse potential
with parameters corresponding to I2, for which the vibrational
period is∼156 fsec) uncoupled to the harmonic bath. (The initial
state|φ〉 for the diatomic is a coherent state|pi,qi〉, with pi ) 0
andqi ) 2.4 Å, considerably compressed from its equilibrium
value req ) 2.67 Å.) Figure 7a is fort ) 192 fsec (about 1.2
vibrational periods), Figure 7b fort ) 640 fsec (about 4
vibrational periods), and Figure 7c fort ) 1600 fsec (about 10
vibrational periods); in each case, the FB-IVR result is the

Figure 5. Angular distribution of a particle transmitted through the
two-slit potential, as given by the exact quantum calculation (QM),
the forward-backward IVR (eq 5.23a) (FB-SC-IVR), and the linear-
ized/classical Wigner model (LSC-IVR); from ref 10y.

Â ) Z-1 e-âĤb |φ〉〈φ| (5.24a)

P(θ) ) (2πp)-1∫ dpθ e-ipθθ/p∫ dp0 ∫ dq0 ∫ dP0 ∫ dQ0

FH(p0,q0,P0,Q0){〈φ|p0′,q0′〉
〈φ|p0,q0〉

〈P0,Q0|e-âĤb|P0′,Q0′〉

〈P0,Q0|e-âĤb|P0,Q0〉
C0 eiS0/p}

(5.24b)

FH(p0,q0,P0,Q0) )

(2πp)-F|〈p0,q0|φ〉|2〈P0,Q0|e-âĤb|P0,Q0〉/· (5.24c)

Figure 6. Same as Figure 5, but with the addition of a bath of harmonic
oscillators coupled to the two-slit potential; the different curves are
for different temperatures for the harmonic bath; from ref 10y.

Pt(r) ) tr[Â eiĤt/pδ(r - r(q̂)) e-iĤt/p] (5.25a)

Â ) |φ〉〈φ| e-âĤb/Z (5.25b)

B̂ ) δ(r - r(q̂)) (5.25c)

δ(r - r(q̂)) ) (2πp)-1∫-∞

∞
dpr e-prr/p eiprr(q̂)/p (5.26)
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solid curve, the exact QM result the dashed line, and the LSC-
IVR/classical Wigner result the dash-dot line. One sees a great
deal of quantum coherence structuresbecause many vibrational
states are mixed in by this initial statesand that the FB-IVR
describes it essentially quantitatively, while (as expected) the
linearized/Wigner approximation (i.e., classical mechanics with
a Wigner distribution of initial conditions) has no hint of it.

Figure 8 now shows how this is modified by coupling to a
bath (modeled by 40 explicit harmonic modes) at various
temperatures.10z At sufficiently high temperature (depending on
the strength of the coupling), the interference structure is
quenched, and in this limit the FB-IVR results are essentially
the same as the classical Wigner model. Thus again, the FB-
IVR is able to describe the quantum interference structure

extremely well, and also the quenching (“decoherence”) that is
induced by coupling to degrees of freedom that are averaged
over.

VI. Further Improvements

Finally, as impressive as the performance of the FB-IVR of
the previous section is, there are some situations for which it is
inadequate. Figure 9, for example, shows an example used by
Makri, et al.,42d the expectation value ofx̂ in an 1-d anharmonic
potentialV(x) ) (1/2)c2x2 - c3x3 + c4x4. (One can think of〈x〉t

as the correlation functionCAB(t) with Â ) |φ〉〈φ| andB̂ ) x̂.)
The FB-IVR (the thin solid line in Figure 9) does not show the
correct (thick solid line) recurrence of interference at longer
time, i.e., after∼10 vibrational periods. In this case, the FB-
IVR gives essentially the same results as those of the linearized/

Figure 7. Probability distribution of the vibrational coordinate of a
diatomic molecule (a Morse potential with parameters corresponding
to I2): (a)t ) 192, (b) 640, and (c) 1600 fsec; for comparison, the
vibrational period is 156 fsec. The broken line is the exact quantum
result (quantum), the heavy solid line the forward-backward IVR result
(FB-IVR), and the thin solid line the linearized IVR/classical Wigner
result (LSC-IVR); from ref 10z.

Figure 8. Same as Figure 7, but with the addition of a bath of harmonic
oscillators, fort ) 192 fsec; panels a-c are for the bath temperature
as indicated. The solid line is the FB-IVR result, and the broken line
the linearized IVR/classical Wigner (LSC-IVR) result.

Figure 9. Average position as a function of timet, for a particle in an
anharmonic potential. The QM curve is the exact quantum result, and
those labeled by the parameterc are for the Filinov parametersc1 ) c2

) c of eqs 6.6-6.8. c ) 0 corresponds to the full SC-IVR (i.e., the
double phase space average ala´ eq 6.2), and the FB-IVR result
corresponds toc ) ∞ (i.e., the single phase space average ala´ eq 6.4).
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classical Wigner approximation. The full HK, i.e., the double
phase space average (eq 5.3), on the other hand (the curve
labeledc ) 0 in Figure 4), gives results essentially indistin-
guishable from those of the correct QM curve. One would thus
like a way to go beyond the FB-IVR, but perhaps not all the
way back to the full double phase space average of eq 5.3.

To see how to proceed, consider the product of two time
evolution operators

(For the correlation functionCAB, t2 ) -t1, and operatorB̂ stands
between the two propagators, but this will be treated as before,
so it is sufficient to consider the simpler quantity in eq 6.1.) If
one uses a separate IVR, i.e., eq 2.11, for each propagator, then
one obtains the following double phase space average

the notation here should be clear: e.g.,p1, q1 ) p1(p0,q0), q1-
(p0,q0) are the variables at timet1 that result from initial
conditions (p0,q0), andp2, q2 ) p2(p1′,q1′), q2(p1′,q1′) are the
values at timet2 that result from (p1′,q1′). On the other hand,
one can clearly combine the two propagators in eq 6.1 into one
propagator for time (t1 + t2) (cf. the FB-IVR)

and represent it via a single IVR

where herep2, q2 ) p2(p0,q0), q2(p0,q0) are the final values
that evolve for time (t1 + t2) from initial conditions (p0,q0).
What we wish to show is how to go continuously from the
double IVR, eq 6.2, to the single IVR, eq 6.4.

The trick is to use the modified Filinov filtering scheme37b

(cf. eq 4.6) applied to the double IVR, eq 6.2. The calculation
is rather tedious but can be carried through; theF ) 1 result
is10aa

where

with

etc., and

c1 andc2 are the two “Filinov parameters” that “tune” between
the single and double IVR, i.e., eq 6.2 and (6.4): forc1 ) c2 )
0, it is easy to see that eq 6.5 reverts to the double IVR, eq 6.2,
while in the limit c1, c2 f ∞, one has

and it is not hard to show that eq 6.5 then collapses to the single
IVR, eq 6.4; i.e., in this latter limit,q1′ ) q1 andp1′ ) p1 so
that the trajectory is continuous at the intermediate timet1, while
for finite value ofc1 andc2, there is a coordinate and momentum
jump at timet1; the size of the Filinov parametersc1 and c2

limits the amount of the “jump”. The implementation of eq 6.5
is obvious: one chooses initial values (p0,q0) and evolves the
trajectory to timet1, arriving at phase point (p1,q1); here one
jumps to a new phase point (p1′,q1′)sthe distance from (p1,q1)
being determined by Monte Carlo sampling with the Gaussian
factors that limit the jumpsand then evolves the trajectory to
the final time t2.

Figure 9 also shows results of this unified single-double IVR
approach,10aai.e., eq 6.5 (suitably modified for having operator
B̂ ) x̂ between the two propagators, and witht1 ) -t2 ) t), for
several values of the Filinov parametersc ≡ c1 ) c2. c ) 0
corresponds to the full double IVR (which agrees well with the
full quantum result), and one sees that increasing the value of
c “tunes” the result progressively toward the single (i.e.,
forward-backward) IVR. The calculation is more efficient the
larger the value ofcsbecause the integration over (p1′,q1′) is
progressively restrictedsbut smaller values ofc give better
agreement with the correct (QM) results. One therefore has the
possibility of going beyond the FB-IVR if necessary, and by a
continuous degree.

Of even more relevance is that, for a system with many
degrees of freedom, the Filinov parameters can be different for
different degrees of freedom. Thus, one can choose large values
for the “bath” degrees of freedom which are not so important,
going all the way to the single (FB) IVR limit for them, while
retaining the more accurate double IVR for the reaction
coordinate and other important degrees of freedom. Preliminary
applications suggest this to be a very fruitful way to proceed.

VII. Concluding Remarks

The initial value representation thus provides the framework
for using classical molecular dynamics to implement semiclas-
sical theory for describing quantum effects in the dynamics of
complex molecular systems. The FB version of the theory, as
described in section V.B. for evaluating time correlation
functions, is especially attractive. The examples discussed in
section V.C. show that it is capable providing an excellent

Mqq ) ∂qt1
(p0,q0)/∂q0

Mqq′ ) ∂qt2
(p1′,q1′)/∂q1′ (6.7)

c̃1 ) c1 + pγ
2

c̃2 ) c2 + 1
2pγ

(6.8)

e-c1(q1′-q1)2/2p f x2πp
c1

δ(q1′ - q1)

e-c2(p1′-p1)2/2p f x2πp
c1

δ(p1′ - p1) (6.9)

K̂ ) e-iĤ2/p e-iĤt1/p (6.1)

K̂ ) (2πp)-F∫ dp0 ∫ dq0 (2πp)-F∫ dp1′ ∫ dq1′ |p2,q2〉 ×
〈p1′,q1′|p1,q1〉〈p0,q0|Ct1

(p0,q0)Ct2
(p1′,q1′)|eiSt2(p1′,q1′)/p

eiSt1(p0,q0)/p (6.2)

K̂ ) e-iĤ(t2+t1)/p (6.3)

K̂ )

(2πp)-F∫ dp0 ∫ dq0 |p2,q2〉〈p0,q0|Ct1+t2
(p0,q0) eiSt1+t2(p0,q0)/p

(6.4)

K̂ ) (2πp)-1∫ dp0 ∫ dq0 (2πp)-1∫ dp1′ ∫ dq1′

eiSt2(p1′,q1′)/p eiSt1(p0,q0)/p|p2,q2〉〈p1′,q1′|p1,q1〉 ×

〈p0,q0| e-c1(q1′-q1)2/2p e-c2(p1′-p1)2/2p{1
2(c̃1c̃2 + 1

4)(Q′Q +

P′P) +
c̃1

2πγ
P′Q + c̃2

pγ
2

Q′P}1/2

(6.5)

Q′ ) Mqq′ + i
pγ

Mpq′, Q ) Mqq + pγ
i

Mqp

P′ ) Mpp′ + pγ
i

Mqp′, P ) Mpp + i
pγ

Mpq (6.6)
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description of quantum interference effects (which are the origin,
ultimately, of all quantum effects) and also the quenching of
these effects (decoherence) when there is sufficiently strong
coupling to environmental degrees of freedom. In proceeding
with applications to real molecular systems (or at least more
realistic models of them), one thus has some confidence that
the FB-IVR can allow one to find out when quantum effects
are important and when they are not.

An FB-IVR calculation for a typical time correlation function
requires an average over the initial conditions of classical
trajectories, just as a completely classical one does, plus only a
one (or low) dimensional integral (over the “jump parameter”).
There are some additional features, though, that increase the
difficulty of an FB-IVR calculation compared to ordinary
classical MD. First, the integrand for the average over initial
conditions is oscillatory (though much less so than without the
FB simplification). The most effective way at present for dealing
with this are the various stationary phase Monte Carlo or Filinov
filtering schemes (cf. eq 4.6); it would be useful to have even
more efficient ways to handle this aspect of the calculation.
Second, an SC-IVR calculation requires calculation of the
monodromy matrixes (the matrix of derivatives of the final
coordinates and momenta with respect to their initial values) in
order to construct the pre-exponential factor of the IVR
integrand. There have recently been several useful advances on
this topic: the log-derivative algorithm,46 which has long been
recognized as the most effective way of integrating the coupled-
channel Schrodinger equation for inelastic scattering, has been
very fruitfully applied to calculating the pre-factor,10bb and
Batista et al.10r have shown that an adiabatic approximation for
computing the monodromy matrices is often quite adequate, and
this greatly simplifies their calculation.

Intense effort is thus still being invested in trying to improve
SC-IVR methodology, to minimize the effort required for such
calculations beyond that of a completely classical treatment.
There is certainly room for further development, but already
the FB-IVR version of the theory is very far along this road. It
should be possible to apply this approach as it presently stands
to a wide variety of molecular processes, with confidence that
it can reliably describe the quantum aspects of the dynamics.
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