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The semiclassical (SC) initial value representation (IVR) provides a potentially practical way for adding
quantum mechanical effects to classical molecular dynamics (MD) simulations of the dynamics of complex
molecular systems (i.e., those with many degrees of freedom). It does this by replacing the nonlinear boundary
value problem of semiclassical theory by an average over the initial conditions of classical trajectories. This
paper reviews the background and rebirth of interest in such approaches and surveys a variety of their recent
applications. Special focus is on the ability to treat the dynamics of complex systems, and in this regard, the
forward—backward (FB) version of the approach is especially promising. Several examples of the FB-IVR
applied to model problems of many degrees of freedom show it to be capable of describing quantum effects
quite well and also how these effects are quenched when some of the degrees of freedom are averaged over
(“decoherence”).

I. Introduction freedom are treated quantum mechanically and the remaining
(many) degrees of freedom treated by classical mechanics. There
are many variations on this idea, and they have been useful in
a variety of applications. As with any approximate model,
"however, there are shortcomings of such approaches, related
primarily to the ultimate inconsistency of describing different
degrees of freedom differently. For thermal ensembles, there
are also several ways of defining an effective potehtiaht

It is well-known that classical molecular dynamics (MD)
simulations are widely used nowadays to describe a variety of
dynamical processes in complex molecular systems, e.g.
chemical reactions in solution, in (or on) solids, in clusters, and
in biomolecular environments. Nature, however, obeys quantum
rather than classical mechanics, so that it would clearly be
desirable to have theoretical approaches capable of including. ) . .
guantum coherence and tunneling effects into classical MD, evenInCIuOles some quantum effects and on which classical trajec-

approximately, to show when they are important and when they tories are then evolved.. ) )
are not. For some processes, particularly those involving Another strategy, which has had a rebirth of interest recently

hydrogen atom motion, one can reasonably expect quantumand is the subject c_Jf this paper, is to treat _aII degret_es of freedqm
effects to be significant. Solvation dynamics, for example, (evgn the electronlq degr_ees of freedom involved in a nonadia-
primarily involves the reorientation of the dipoles of water batic process) semiclassically (SC). Much widtin the early
molecules, and this is almost exclusively hydrogen atom motion 1970s showed how numerically computed classical trajectories
(i.e., the rotation of water molecules). Also, as soon as one for multidimensional systems could be u_sed semlcla_ss_|cally and
allows the OH (or CH or NH) bond to become dynamically that such a theory provides an approximate descriptioallof
active (most classical MD simulations use rigid-rotoscH ~ quantum effects in molecular dynamiemiterference (coher-
molecules), as one obviously must when these bonds are brokergnce), tunneling, selection rules due to identical particle
and participate as a reactant or product in a chemical reaction,Symmetry, and quantization of bounded motiince they all
quantum effects may become Signiﬁcant (reca" tinatfor an arise Ultlmately from the SUperpOSition of probablllty amplitudes,
OH stretch vibration is~18 timeskT at room temperature). ~ Which is contained in this semiclassical description. Many
Furthermore, any process that involves transitions betweenapplications were carried out at that time, primarily to gas-phase
different Born-Oppenheimer electronic statealmost always molecular collision problems, illustrating these ideas and
the case in photochemistinecessarily involves quantum showing that the semiclassical description is often very good
mechanics for the nonadiabatic dynamics of the electronic €ven when quantum effects are quite large. Since, as noted
degrees of freedom, and one must somehow combine this withabove, classical MD is now quite feasible even for complex
a consistent description of the dynamics of nuclear motion.  molecular systems, and since SC theory only requires classical
Since a Comp|ete quantum treatment of the dyna}njxfs trajeCtorieS as input, it should therefore be possible in principle
many degrees of freedom is not feasible, there are several wayd0 use SC theory to add quantum effects to classical MD
one can proceed in order to model these phenomena theoretisimulations of complex systems.
cally. One is to employ various mixed quanttieiassical The first step toward changing “in principle” into “in practice”
models? whereby a few of the most important degrees of is use of the initial value representation (IVR). Though the basic
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IVR idea—i.e., of converting the SC nonlinear boundary value,
or “root search” problem, into an integral over initial conditiens Xo(p1)
was introduced many years a#fat is recent work1° by several
groups that has resurrected interest in it as a simulation tool.
The purpose of this paper is to review the basic IVR approach
and some of its recent applications, with special emphasis on
its potential for being able to describe quantum effects in
complex molecular systems, i.e., those with many degrees of
freedom. The ultimate goal of this work is to be able to
implement classical trajectory simulations in a way that can
incorporate quantum effects in a completely non-ad hoc fashion. 53
Section Il first reviews the basic IVR idea and its connection
with older SC theory, and section Il shows how the description \
can be generalized to include the electronic degrees of freedom
in nonadiabatic processes on an equal footing with those of the
nuclei. Section 1V then surveys recent applications of the SC- _ ] N ] ]
IVR to simple systems (i.e., those with a few degrees of Figure 1. Sketch of the final position, of a classical trajectory as a

function of its initial momentunp; (for a fixed value of the initial

freedom). For simple systems, one can compare SC-IVR resultsposition %)), indicating that there may be more than one classical

with accurate quantum calculations, and these comparisonSyajectory (here two) that are determined by the boundary conditions
provide strong evidence that the SC-IVR approach, to the extent (x,,x,).

that it can be applied, provides an excellent description of
quantum effects in essentially all cases.

The main challenge, therefore, is one of implementation; i.e.,
can one in fact carry out SC-IVR calculations for molecular
systems with many degrees of freedom? Section V therefore
focuses explicitly on the evaluation of time correlation func-
tions1® which are the quantities of dynamical interest for
complex systems. Of particular interest in this regard is the
forward—backward (FB) version of the IVR, which emerges (D1, %) = X (2.4)
as the simplest version of the theory that is capable of describing PP 2
true quantum coherencefinterference effects in molecular dy-jn general, there will be multiple roots, as indicated graphically
namics. Several recent applications of the FB-IVR approach j, Figure 1, and the summation in eq 2.2 is over all such roots.
are discussed there, showing unequivocally that it is able {0 The jacobian factor in eq 2.2 is evaluated at the root of eq 2.4,

describe quantum interference effects (from which all quantum a4 one must take the appropriate branch of the square root in
effects ultimately arise) in systems with many degrees of g4 22 (i.e., the Maslov index).

freedom and also how these effects are (partially) quenched | the older semiclassical watk of the early 1970s, one
when the coupling to “environmental” degrees of freedom is ygyally proceeded further by introducing semiclassical ap-
sufficiently large. proximations for the wave functiong,(x) in eq 2.2 (i.e., by
using actior-angle variables) and also evaluating the integrals
over x; andx; via the stationary phase approximation (SPA).
The basic IVR ide#-5¢417can be illustrated by considering These approximations, which formally introduce no additional
a generic matrix element of the time evolution operator error to that already contained in the semiclassical approximation

whereH(p,x) is the classical Hamiltonian of the system. To
apply eq 2.2 as written, one needs to solve a nonlinear boundary
value problem (the root search problem): xif(p1,x1) is the
coordinate at timéthat evolves from the initial conditionp{,x1)

att = 0, then for a giverx;, one must find the values @f that
satisfy

Il. Basic Initial Value Representation Idea

(propagator) to the coordinate matrix of the propagator, give the following
) “primitive” semiclassical result for the matrix element
—ifith
Ky, ® = [y & "o, 0= an. 112
il - T, 2 o iSi(nz,na)/h
Sk f Aoy ()9, (X Bl X0 (2.1) Kin, (D) = Z (—2nih) enmit (2.50)
2 1 roots aql

which i_s the probability amplitu_de for a transition from state where ,q) are the actiorangle variables (that have replaced
n; at time zero to state, at time t. Use of the standard the Cartesian variablep,&)) and the actior§(nz,ny) is
semiclassical (Van VledR) approximation for the coordinate

representation of propagator gives S(n,ny) = j: dt' [—q(t)n(t) — H(N(E),q(t))] (2.5b)
Kopn,@® = > Jax, [ Here the initial and final action variables;; and n,—the
roots classical counterpart to the quantum numbers of the initial and
L \F Xy |22 S Goxh final states-are the boundary values that determine the ap-
dXo ¥, (Xo)* ¥ (X0)| (27i1) . e (2.2) propriate classical trajectories, i.e., those that satisfy
1
Ny(AyNy) =Ny (2.5¢)

where §(X2,x1) is the classical action along the trajectory that
goes fromx; to Xz in time t The strategy of the IVR approach, howevemddto perform
thex; andx; integrals in eq 2.2 via the SPA but rather to carry

— Y A ' ) them out numerically; i.e., one makes the semiclassical ap-
X,,Xy) = [ dt' p(t")x(t H(p(t"),x(t 2.3 Lo . . ;
St fo P(t)X(®) (PEX®)  (2:3) proximation to the propagator in the (Cartesian) coordinate (or
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momentum) representation and then carries out any further g-iHth —

manipulations with it fully quantum mechanicaly.An im- (%o Do) 2
portant simplification of eq 2:2the basic IVR “trick’—is then f dx, f dpo[ _Faroro /(—2nih)F] eIS(Xovpo)/hmth
possible: inside the integral ovgi, the integration ovex; is )
changed to that ovep; (2.10a)
AX,(X3,Pq) wherepy(Xo,po) is the time-evolved momentum and the action
Z f dx, = f dp, ——— (2.6) integral in momentum space is given*By
roots 8pl

S(xo.Po) = ﬁ; dt' [—x(t)p(t') — H(p(t).x(¥))]  (2.10b)

where the Jacobian comes from this change of integration

variables. As is clear from Figure 1, integration ovef A particularly useful contribution was made by Herman and
corresponds to integration ove and summation over all  Kjyk6a (HK) in showing that a similar expression pertains also
multiples roots. Equation 2.2 thus becomes for coherent stateipo,xol] which are hybrid states, intermediate

between position and momentum eigenstates

axt(xlvpl)‘/
P,

an,nl(t) :fdxlfdpl’

o iU —
N R (2nh) F dxo | dpo Ci(Xo.Po) SoPfp x [pg.Xol
(th)F] Py () 4, (), (2.7) S o ] cpoc: " 2.118)
where $(x1,p1) = Si(Xi(X1,p1),X1) andX(x1,p1) is now written HereS is the same action integral as that in eq 2.3, and the HK
for Xo(x1,p1). prefactor is

Equation 2.7 is the simplest example of an IVR. The nonlinear
boundary value problem has been replaced by an integral over 1% Ip; hy X i 0P 4
the phase space of initial conditions, something that is more  Ci(XoPo) = 5[5t 35—+ =" 7=+ —[I"" (2.11b)

o 2\0x, 9Py, 0 Ipy  hydx,

amenable for application to systems of many degrees of freedom
(if Monte Carlo methods can be utilized for preforming the g coordinate space wave functions of the (Glauber) coherent
phase space integration). It is also useful that the Jacobian factor,ieat 5re given by
(dx/ap1) now appears in the numerator in eq 2.7, rather than
the denominator as in eq 2.2, since it can go through zero for
various values of the integration variables. Equation 2.7 still
has all the interference structure that is the hallmark of
semiclassical theory; e.g., if the integrals in eq 2.7 were all and similarly forX|p;,x:C] they become position eigenstates as
evaluated by the stationary phase approximation and WKB wave y — o and momentum eigenstatesjas> 0, in which limit eq
functions were used fap; andy,, the primitive semiclassical ~ 2.11 reduces to egs 2.9 and 2.10, respectively. Their usefulness
result (eq 2.5) would be obtained, with interference between is that they are localized in both coordinate and momentum
different stationary phase trajectories, etc. The IVR also provides space. Coherent states are the “frozen Gaussian” version of the
an approximate description of classically forbidden processes semiclassical wave packet methodology developed by Rétker
(“dynamical tunneling?®d, where there are no real stationary and fruitfully applied by him to many problems over the years.
phase contributions to the integral. In fact, this was the first It was this frozen Gaussian (i.e., fixedl model that motivated
applicatiorf® of an IVR and the principle reason it was originally Herman and Kluk in obtaining eq 2.11. K&yas also described
introduced, i.e., as a way to treat classically forbidden processesthe generalization of eq 2.11, where the coherent state parameter
with real-valued trajectories. y is a matrix and different for the initial and final coherent states.

Equation 2.7 can also be written in Dirac notation

Fl4 .
X|Po, X, (7%—) e*(l’/2)|><*><0|2 e'Po(X*Xo)/h (2.12)

[ll. Inclusion of Electronic Degrees of Freedom
axt(x()vpo)

/ It is not advocated (at least here) that one describes the
9Py

physical coordinates and momenta of electrons semiclassically,
12 but the collective degrees of freedom associated with a finite
(27ik)" és‘(x°'p°)’h@n2|xt|]}0|wnlm (2.8) manifold of electronic states can be included in the SC-IVR
approach by using the “classical electron analog” model of
where now Xo,po) denotes the initial conditions for the Meyer and Miller (MM)?21f X andP denote the (Cartesian)
trajectory,x; = x(Xo,po) is the time-evolved position, etc., and  coordinates and momenta of the nuclei angef), k=1, ..,N
one can delete the initial and final states from eq 2.8 to have anthe classical actionangle variables corresponding to a set of

explicit representation of the propagator itself in terms of Dirac N €léctron states, then MM's classical Hamiltonian for the
position eigenstates complete nuclear-electronic system is

[y & M, O= [k, [ dpo’

o ith _ S

S [ dpo[

P
H(P,X,n,g) =—+ Z nH(X) +
u &
N 1 1\1272
Z Hkk(x)’(nk + E)(”k' + E)] cos@y — q) (3.1)
Equation 2.9 is the Cartesian coordinate IVR; if one proceeded k,'(;kl
similarly but with momentum space wave functions, then the

(Cartesian) momentum version would be obtained where{Hy(X)} is the diabati€® electronic Hamiltonian matrix

3X(X0:Po)

Po

1/2
/(zmh)F] gSoPy My | (2.9)
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(assumed here to be real) which characterizes\tleéectronic N 1 ) )
states; it is assumed to come from an “honest” quantum Hg(p.X;X) = Z—(f)k + % — DH(X) +
mechanical electronic structure calculation for fixed nuclear =12

coordinatesX. MM used this Hamiltonian, eq 3.1, within the N L R
“guasiclassical” mode¥* i.e., the initial conditions were set to (PP + %X Hi (X) (3.5a)
quantized initial values((t;) = 1 if statei is the initial electronic k=k=1

state,ng(t;) = 0 for k = i, with all angle variablesi(t;) chosen
randomly from the interval (072), and similarly for the bound
nuclear degrees of freedom), and the final action variables were
histogrammed to determine the distribution of final electronic [, H, | P 0= Hy (X) (3.5b)
(and nuclear) states. The primary motivation for this was to KTl kK

have an approach which treated electronic and nuclear dynamics,nq since the matrix of the electronic oscillator Hamiltonian is
on an equal footing. A variety of applications in the early 1980s jqentical to the original diabatic electronic matrix, the resulting
gave reasonably good results for a variety of electronically quantum mechanics must be the same. At the full quantum level
nonadiabatic processes (F*H (j = 0) —~ F + H, (j = 2),2° of description, therefore, eq 3.3 is not an approximation to the
Br +H, (v=0)—~Br+Hy (v=1)?Na+1—Na"+172  gacyronie-nuclear system, but rather a particular representation
...). It is appreciated, though, that histogramming an action ¢ it 31 The approximation is that we now proceed to treat it
variable into qua}ntum number “bins”, when it only spans a range semiclassically.

from —%/to %5, is very crude at best, and the model thus does |1 ig 5 straightforward matter to apply the SC-IVR approach

not always give accurate resuifs. of section Il to the classical Hamiltonian of eq 3.3.7#(R)

_One now proposes to upgrade the description to the semiclas-nq,,(R) denote the initial and final nuclear wave functions,
sical level?® and from the discussion in section I, it is clear then the SC-IVR expression for a typical vibronic (i.e.

that one first transforms from the electronic acti@ngle gjectronic-nuclear) transition amplitude is the generalization of
variables in eq 3.1 to the corresponding Cartesian-like electronic eq 2.7

coordinates and momenta
1/2
—/(Zﬂih)HN]

t)= [ dx,dX, [ dp,dP
X = ,/nk+%cosqk (3.2a) Sl = [ o, [ cpycP, 0(p2,Py)
HEX)DE ()P (X,)y(X,) €5CaPXaPIN (3. 6)

in the basis of thé states of eq 3.4; an elementary calculation
shows that

XXy

= /n+1si 3.2b
= M 5 SINGk (3.2b) where x(X1,p1,X1,P1) and X(x1,p1,X1,P1) are the coordinates
at timet that evolve along the classical trajectory with the
The classical Hamiltonigf thus becomes indicated initial conditions and the corresponding action
integral. The classical trajectories here are for the full séd of
P2 N1 electronic and- nuclear degrees of freedom (in the MM spirit)
HPX,px)=—+ Z—(pk2 + %2 — DH(X) + obtained from the classical Hamiltonian of eq 3.3. As noted
u =2 before, this approach has the desirable feature of treating the
N electronic and nuclear degrees of freedom on an equal basis,
(PP + XX IH(X) (3.3) thus avoiding any inconsistencies that arise in trying to mix a
k<k=1 guantum description of some degrees of freedom with a classical

description of others.
where it is seen that the electronic degrees of freedom appear |t is also interesting to note that the above SC-IVR approach
as harmonic oscillators, one for each electronic state. Theincludes the Pechukas mogfdor treating electronically nona-
coordinate space wave functions for thééelectronic states  diabatic processes. In this approach, one begins with the

are thus given by (formally exact) Feynman path integral expression for the
electronic-nuclear time evolution operator
N
— r —iHt/A X X i , h
D (x) = $1(%) I!:l%(xk) B4 EX e ™M X 0= ] IDX() f, Dx(t) €FOXOI (3.7)
K=k

and imagines first evaluating (exactly) the path integral over
the electronic degrees of freedom, whereby the vibronic
amplitude becomes

where ¢o(X) and ¢1(x) are the ordinary one-dimensional har-
monic oscillator wave functions for the ground and first excited
state. Since the sum of thé¢ quanta,y;_, Ny, is a conserved
quantity (both classical and quantum mechanically) for the X
Hamiltonian of eq 3.3, this is a complete set of states in the S0 = f dxzf dXy x2(X2)* x2(X1) fxf

manifold z[:':l ng = 1; i.e., theN “electronic” states correspond ot 1o

to one quantum of excitation (essentially the probability) being DX (1) eXF{Ef(; dt Eux(t) ] Ko AX(0)] (3-8)

in one of theN electronic modes.

It is interesting to note that if the Hamiltonian of eq 3.3 were where Ky ([X(t)] is the electronic transition amplitude as a
upgraded to a full quantum description, then it provides an exact functional of the nuclear patiX(t). Up to this point, the
representation of the full nucle&felectronic state system. This  formulation is exact, but Pechukas now evaluates the nuclear
is most directly apparent from the deviation given by Stock and path integral semiclassically, i.e., via the functional version of
Thoss$! and can also be readily verified by constructing the the stationary-phase approximation. This determines an effective
matrix of the electronic oscillator Hamiltonian for fixed nuclei  nuclear trajectory. The SC-IVR approach, howevigiit were
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implemented in this two stage fashiewould generate the Photodetachment spectra (i.e., photoelectron spectra of nega-
electronic transition amplitudé; i X(t)] exactly; this is because  tive ions) have been calculated by Brewer, Hulme, and
for a fixed nuclear trajectory the electronic Hamiltonian of eq Manolopoulostc for 1=(Ar),, n = 2—6; this is essentially the
3.5a is a time-dependent quadratic Hamiltonian, for which the I(E) of eq 4.1, wheréyLis the initial (ground) vibrational state
semiclassical approximation is exact. The SC-IVR model then of the negative ion anHl the Hamiltonian for the (dissociative)
does a better job of treating the nuclear degrees of freedom byneutral molecular system. Very good results were obtained, and
using the IVR rather than the stationary phase approximation. it was impressive that such a relatively large system (up to 15
In practice, of course, one does not implement the SC-IVR degrees of freedom) could be treated (though many of these
model in this two-stage manner, but rather treats the nuclearwere very weakly coupled harmonic modes).

and electronic dynamics simultaneously. One (desirable) con- An example involving electronically nonadiabatic dynamics,
sequence of this is that there are no nonlocal (in time) féfces i.e., the electronie nuclear Hamiltonian of section IlI, was the

to deal with. photodissociation of ozone treated by Batista and MifleHere
o . lxUis the ground vibrational state of ozone (in its ground
IV. Applications to Simple Systems electronic state), and the Hamiltonibinconsists of two excited

There have been a number of applications of the SC-IVR electronis states, coupled through a conical intersection, along

approach by a number of different research groups to a varie'[yWIth the ”UC"?”“ degrees of freed_om. Agreement of the SC-

of simple systems (i.e., those with a small number of degrees IVR results with ql_Ja_ntum calcul_atlo??sfor the same system

of freedom) that illustrate its usefulness and the typical accuracy €€ VEry 9°°d: S.|m|lar calcullatlon.s by Coro.nado. ePafor .

one can expect. Here we discuss a selected set of these, whici{1® Photodissociation of ICN, involving nonadiabatic dynamics

have used either the coordinate-space (i.e., Van Vieck) IVR or Of tWo coupled excited electronic states, also gave excellent

the coherent-state (Hermatluk) version. agreement Wl_th quantum calculatlc_ms.; a very impressive cal-
Eigenvalue spectra and photodissociation cross sectionstulation of this type for photoexcitation of pyrazine to the

involve a diagonal matrix element of the microcanonical density €XCited $ state, which is coupled to the State via a conical
operator intersection, was carried out by Thoss et®lincluding all 24

vibrational degrees of freedom, resulting in very good agreement
I(E) = |6(E — A) [0 (4.1a) with quantum multiconfiguration time-dependent Hartree (MCT-
DH) calculations.
which can be expressed as the Fourier transform of the matrix ~State-to-state scattering calculations are also possible by using
element of the propagator the formal quantum mechanical expression for $matrix in
terms of the propagat®t

1o (™ o JEth, i
I(E) = —-Ref" dté“"Gzle ™" y0  (4.1b) S (B) = —foyp, & R [
2Ny 0

N [Et/h —iAth
The matrix elementy|e Hth|y[is thus evaluated by the SC- dt "7 Rypy J€ T IR, 0(4.3)
IVR procedure, eq 2.7 or 2.11, and then integrated over time
as in eq 4.1b to obtail(E). For a bounded molecular system, Wwhere{¢n(r)} is the asymptotic internal eigenfunctions of the

the formal expression fdi(E) is collision partners andR the (Jacobi) coordinate for relative
translational motionk is the total energyk = 4/2“(E_€ni)/h2
I(E) = Zlﬁtlwnufé(E -E) (4.2)  the translational wavevectors, and= hki/u the translational

velocities. This can be put into standard IVR form by adding
the factoré(R, — Ry) to the integrand and integrating ovie,
making the IVR transformation akeq 2.6, and then doing the
t-integral by virtue of the factod(R: — Ry), giving finally

where{En} and{|yn[ are the eigenvalues and eigenfunctions
of H, so that peaks im(E) identify eigenvalues. (Typically, a
convergence factor, e.g., expll/2)AE4%h?, is included in the

time integral to accelerate its convergence, and the delta function _ GED
peaks of eq 4.2 become Gaussians, eXp[2)E — E)YAE?].) S (E)= —e_'(k1R1+k2R2)f dr, f dp, f dp, =l
Tomsovic and Helléf have calculated such eigenvalue =" 9(Po,Po)

spectra for the two-dimensional stadium billiard (using the Van F 12 (LS

Vleck IVR) and found excellent results, even up to very highly (2rih) | € & (1 )* b (ot v10/Py (4.4)

excited states for which the level density becomes large. (This

required the use of some very clever techniques for carrying whereRy = R; andt is determined by the time th& = R..

out the phase space integral that are special for billiard (i.e., Skinner and Millet® carried out such calculations for the

hard wall) systems.) This example shows that the semiclassicalstandard model of inelastic scattering, the collinear-Hél,

matrix element of the propagator can be accurate for long time, system first studied by Secrest and JohAéamany years ago.

much longer then had previously been expected, and even whemAgreement with the correct quantum results is essentially

the classical dynamics is highly chaotic. guantitative, following the interference structure in the transition
The eigenvalue spectrum of the HCI dimer (treating each probabilitiesPn,n, = |Sy,n,|? @s a function of final vibrational

monomer as a rigid rotor) has been calculated by Sun andquantum number.

Miller, 19 specifically, the lowest few vibrational eigenvalues Garashchuk, Grossmann, and Taritdnave carried out

of each molecular symmetric (AA~, BT, and B"). Agreement similar scattering calculations (but using the HK coherent state

with guantum mechanical calculations (with the same potential IVR) for the collinear H+ H, — H, + H reaction, here the

energy function) was quite good (to-2 cn11), even for the primary interest being to see how well the SC-IVR approach

tunneling splitting associated with the symmetrical hydrogen can describe the resonance structure in the energy dependence

bond flipping, i.e., C+H-+-Cl-=H — H—Cl---H—CI (AEqm = of the reaction probability. It has long been realized #&¢,

16 cnTl, AEsc = 18 cnml). from a semiclassical point of view, resonance structure is an
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interference effect between different trajectories that are tem- A= P2 E g2 (5.2a)
porarily trapped in the collision complex (just as discrete R .
eigenvalues themselves are the result of interference between B = h(s(d)) (5.2b)

different trajectories that are trapped forever in a bounded
molecular system). As such, they should be describable within
the SC-IVR approach, and it is indeed encouraging to see that P N R
the resonance structure from Garashchuk et al.’s semiclassical F = 2IHN(S@)] (5.2c)
calculations is in very good agreement with the correct quantum

structure. It is another important illustration of the fact that the andh(s(§)) the Heaviside function that is 1(0) on the product
SC-I\(R_modeI is capable of providing a usefully accurate (reactant) side of the “dividing surface”, defined &g) = 0,
description of quantum effects in chemical dynamics. which separates reactants and products.

Application of the SC-IVRs of section Il, eq 2.9 or 2.11,t0  Straightforward use of the SC-IVR for each of the time

compute spectral densitiél) (eq 4.1),Smatrixes (eq 4.3), or  evolution operators in eq 5.1 thus leads to a double phase space
any other quantum expression involving the propagator, is thus gveragea

very straightforward in principle. The “only” computational

difficulty is that it involves evaluating a multidimensional c.m= [d d do.’ [ da.’ Alg’0

integral (over the phase space of initial conditions) of an ae(V) f pof qu Po f do’ Lol ,|q0 x
oscillatory integrand. To accomplish this, the applications above % 12 8&1/2/ orh)F (5.3
have all used variations of “filtering” or stationary phase Monte 3p0| |ap0' (27h)" (5.3)
Carlo method¥ to dampen the oscillations of the integrand.

Consider, for example, a generic integral of the form where here the Van Vleck (coordinate space) IVR has been used,
and coordinates and momenta for all degrees of freedom are
| = f dx A(x) €5 (4.5) denoted by §,p), with gt = q(Po,do), & = A(Pd’.q0), & =
S(po,9o), and S’ = S(po',do’). The interference between the
trajectories with different initial conditions is the source of
computational difficulty, but it is also the source of the quantum
5 effects, so one must deal it.
I(c) = f dx A(x) €% e—(d2)l(f*5/f*x)lz|| + ica—s|1’2 (4.6) A. Linearization Approximation. An approximate way to
X 9x deal with the oscillatory integrand in the double phase space
average (eq 5.3) is to assume that the only important contribution
The exponential factor, exp(c/2)|(3S/x)|?), which can be used  comes when the two trajectories are infinitesimally close to one
for Monte Carlo importance sampling, favors the regions of another. This (admittedly drastic!) approximation is implemented

space near the points of stationary phase (which are determinegy changing integration variables fromo(qo) and @¢',qo’) to
by (050x) = 0). In the limit that the parameter— «, eq 4.6

in fact yields the stationary phase approximation to the integral

whereF is the flux operator

(@Bl &S

The modified Filinov approaé®® replaces this by

_ 1 ,
Po= é(po +py)
2a 112

(2i)"/ 4.7) APy =Py ~ Po

lspa= ZA(Xk) Chae

IX0X 1

Qo= E(QO +ao)

whereF is the dimension of the integral afdy} the points of

stationary phase. In the limit= 0, eq 4.6 reverts to the original AQy =0y — Qo (5.4)
integral, eq 4.5, but with poor Monte Carlo statistics. The ) ) ) )
strategy is thus to evaluate eq 4.6 for finite c, extrapolating to @nd €xpanding the magnitude and phase of the integrand to first
values small enough that thex¢ 0 limit can be determined. ~ Order in Apo and Aqo; the result gives the classical Wigner
approximation

V. Applications to Complex Systems; Time Correlation

Functions Cag(t) = (27h) " f dp, f ddlo Au(Po:80)Bu(Prd)  (5.5)
To deal with molecular processes for truly complex systems,

e.g., chemical reactions, molecular energy transfer, photodis-

sociation (or detachment) in clusters, liquids, solids, proteins,

etc., it is useful to focus directly on the time correlation function

wherep; = pi(Po,do), dt = di(Po,do), and Ay and By, are the
Wigner functiong® corresponding to these operators

_ \ ik Vol A ,
relevant to the quantity of interest. These are of the #6rm Ap.a) = [ do’ e ™" + q'/21Alg — q'/20 (5.6)
A iOvkA  —iAtk and similarly forB,,. Equation 5.5, which we have referred to
Cas() =tr[Ae™Be "] (5.1) as the linearized approximatithof the full SC-IVR expression

. (LSC-IVR), is thus effectively a classical calculation with the
where operatoA typically involves all the degrees of freedom  Wigner functions replacing the classical functions; i.e Ajf
of the molecular system (e.g., it usually involves the Boltzmann (p,q) and Bu(p,q) were replaced byAci(p,q) and Bei(p,q),
operator €M), H is the Hamiltonian of the complete molecular respectively, then eq 5.5 becomes precisely the classical
system, but Bypically involves only a few degrees of freedom expression for the correlation function. The idea of carrying
(e.g., those of the solute). For example, the reactive flux out an essentially classical calculation with Wigner functions
correlation functior?® the long time limit of which gives the  has arisen many times in the p&éfbfrom different formula-
rate constant for a chemical reaction, corresponds to eq 5.1,tions; it is interesting here to see how it emerges as an
with operatorsA and B given by approximation to the SC-IVR. (A similar kind of linearization
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Figure 3. Decay of the population differenc®(t) = Pi(t) — Pa(t),

for a two-(electronic) state system coupled to a bath of harmonic
oscillators (where state 1 is the initial state): (a) weak and (b) strong
coupling to the bath; from ref 10I.

0.5

0.0

200 250 too quickly. Again, the LSC-IVR/classical Wigner approxima-
tion gives results in very good agreement with the correct
Figure 2. Reactive flux correlation function for a double well potential  quantum results (also shown in Figure 3).
coupl_ed to a bath of harmonic oscillators: (g) strong and (b) weak  The LSC-IVR/classical Wigner model thus works quite well
coupling to the bath, respectively; from ref 10j. for these examples, and there should be many realistic molecular
systems for which it does a good job. Unfortunately, though, a
approximation was also used in the older SC framework to more detailed analysi& shows that it cannot describe quantum
obtain dipole-dipole correlation functions for spectral line coherence effects (there can also be coherent motion classically,
shapes?) which it does of course describe correctly). An application of

Because the LSC-IVR/classical Wigner model is so simple, the LSC-IVR to inelastic scatterin§® for example, showed it
it has been applied to several benchmark model problems toto give a poor description of interference effects in the product
illustrate what it can and cannot do. Figure 2, for example, shows state distribution (while the full SC-IVR treatment describes
the flux correlation function (cf. eq 5.2) for a model of an them extremely well). Use of the Wigner function for the
isomerization reaction in a condensed phase medium, namely Boltzmannized flux operator (cf. Eq(5.2a)) does incorporate
a double-well potential coupled to a bath of harmonic oscilldfbrs.  some quantum effects in the flux correlation function: specif-
Figure 2a is for the case of strong coupling to the bath, for ically, the quantum behavior is described well for short titne,
which there is no recrossing flux (and therefore for which < Ap; the longer-time behavior, however, is strictly that given
transition state theory (TST) is a good approximation), and by classical mechanics. (Quantum effects in the long time
Figure 2b is for the case of weak coupling. In the latter case, dynamics were thus not important for the two examples
flux recrosses the dividing surface several times before the discussed abovéi1% but this is not always the case (vide infra).)
products are thermalized; TST is of course not valid in this Because it describes the short time quantum behavior well, the
regime. The rate constants (the long time limit of the correlation LSC-IVR/classical Wigner model can serve as the basis for a
function) given by the LSC-IVR/classical Wigner model are in quantum transition state theory (because TST is based on the
excellent agreement with accurate quantum results in both of short time behavior of the flux correlation function); Pollak et
these regimes. al.*1 have pursued idea this quite fruitfully.

Figure 3 shows an example using the classical model of B. Forward—Backward IVR. To go beyond the linearized
electronically nonadiabatic processes summarized in sectionSC-IVR or classical Wigner approximation, yet avoid having
[1.19'1t is a model of an electron-transfer reaction (or any other to deal with the double phase space average in eq 5.3, we have
“radiationless transition”) in a condensed phase, specifically a utilized an idea suggested by some interesting work of Thomp-
two-state system coupled to a harmonic bath (often referred toson and Makrf?2P namely, to combine the two propagators
as the “spin-boson” model). Figure 3a shows the population e Hh which propagates from 0 tpand €™Hth which propages
relaxation for weak coupling to the bath so that the population from t to O, into one semiclassical propagation from 0 to O;
hops back and forth a number of times before thermalization, i.e., since the SC-IVR makes the semiclassical approximation
and Figure 3b shows the case of strong coupling, for which from 0 tot and fromt to 0, one might as well also makeadt
these oscillations do not occur because the system is thermalizedimet and have just a single SC-IVR for the Heisenberg operator

0 50 100 i 150
Time (fs)
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B'() = "B e (67 Cugl®) = [~ dp,BI@Th) " [ dp, [

The complicating feature, of course, is that oper&amtands doly Cy(Potgipy) €5PowPIp 1A py.0, 0 (5.10)
between the forward and the backward propagators in eq 5.7,
so that one must learn how to deal with it semiclassically. There is thus a&ingle phase space integral over all degrees of
(Thompson and Makri used the forwardackward?2Pidea to freedom—the same level of complexity as for a completely
construct an influence functional (semiclassically) for an an- classical calculatiofrplus a one-dimensional integral over the
harmonic “bath” coupled to a quantum “system”. The above “jump” parameteips, which is the magnitude of the momentum
“complicating feature” does not arise in this case because thejump at timet. It is hard to imagine anything simpler than this
propagators in the influence functional involve only the bath thatis capable (see below) of describing true quantum coherence
degrees of freedom and operafdonly those of the system).  features. Note also that the direction of the momentum jump is
The key ide®™d is to write operatorB as an intergral a normal to the dividing surface defined bfg) = 0; thus, in
transform of an exponential operator, for which a semiclassical a complex molecular systefre.g., a liquid, a protein, etethe
treatment is straightforward. For the reactive flux correlation (many) degrees of freedom that are not directly coupled to the

function, for example, operatd is reaction coordinate will experience no momentum jump at time
) t and thus-to the extent that they are not coupled to the reaction
B = h[s(§)] (5.8a) coordinate motiorrback-integrate in the backward step- 0.

_ o ) _ Their contribution to the net actid®, eq 5.9c¢, will thus cancel
since it is a function of coordinates only through the one out; only the reaction coordinate and those degrees of freedom
collective variables(q), the appropriate integral transform is a  significantly coupled to it contribute to the action. This self-

1-d Fourier transform cancellation of the oscillatory character of the integrand induced
_ by the combined forwardbackward trajectory is its most
B= fjo dpsl?’(ps) =@ (5.8b) important feature. More general operat@si.e., those that

involve momentum as well as coordinate operators, can be
treated by a generalizatid of the above Fourier transform
(the Weyl-ordered product representation).
= L . S -1 Itis also easy to see what approximation to eq 5.10 causes it
B(p) = Lm[Zm(ps —ie)] (5.8¢) to revert to the essentially classical result: if one assumes that
only small values ops contribute to the integral over it, then
(In practice one can set = 0 since the other factors in the one can make a first-order cumulant approximation topghe
integrand are zero fqus = 0.) The coherent state IVR is then dependence of the integrand
used for the product of operators

where

P00l APy 0o [Co(Po ;P €5Pod0PIh

iAth _jps(@)/h —iAth R _
) © PGl Al PGP Pe® (5.11)

e
which can be thought of as three successive propagators. The(
result (which can be derived in several wiys®9 has the
standard HermanKluk form of eq 2.11

sinceCo(Po,do;0) = 1, S(po,do;0) = 0). The diagonal coherent-
state matrix element of an operator is its Husimi funcifon
Ay(Podo) = [BodolAlpodeD (5.12)

enﬂlt/h eips's(tf])/h e—nﬂlt/h — (Znh)_Ff dpo f
] ISo(CoPPIR o 1 which is similar (though not identical) to the Wigner function,
ddo Co(do:PoiPy) €7 IPg', 0o IPo,ol (5-92) and the parametex(po,go) is essentially the classically evolved
) ) function s(po,qo); bringing the f dps inside the phase space
where @o',po’) are the final coordinates and momenta that result average thus inverts the Fourier transfaB(ps), to give
from the trajectory which begins &= 0 with initial conditions
(do0,po), evolves via the full (classical) Hamiltonidhuntil time _ -F
t—yielding coordinates and momentay,p)—then has the Cas() = (27h) f dpo f ddlo An(Po:do)B(S(doPo)) (5-13)

momenta changed according to which one might call the classical Husimi model; it has the

same form as the classical Wigner model of eq 5.5 but with
as(qgy) (5.9b) Husimi functions (Husimi functions arise naturally in a coherent-

PPt R ag, state representation, and Wigner functions in a coordinate-space
representation), and is also seen to arise from making a
and is then propagated backward in timet ts 0. The action linearization approximation, here a linearization of the integrand
integral § is in the jump parameteps.

Finally, we note that there is another way of implementing
Y 0 the forward-backward idea for the complete molecular sys-
o) = [ dt —H)+ + [ dt —H ) k <
S(Podo) L/‘; (PG = H) + pS(ay) j; (Pl g tem: the Heisenberg time evolved operaBof eq 5.7 can
' also be written as

and the HK prefacto€y involves the same derivatives of final . . d oo o8
values with respect to initial ones as in eq 2.11b. B(t) = "B e = —j - M B g 3 =0
With the intergral transform for operat@r(eq 5.8b) and the d1 (5.14a)
FB-IVR for the product of exponential operators (eq 5.9), the
reactive flux correlation functiornor any correlation function and the above forwarebackward SC-IVR used to obtain the

with operatorB of the form B(s(§))—is given by product of exponential operators
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gHth A8 o—iRth (5.14b) 19) = Ip; g3 ﬁ

just as above, leading to a momentum jumpR(i& B(s(d)) at

time t given by U
d y
P P+ AB(S(qy) E(qu) (5.15) @ B}

Sun and Millet% tried this derivative form of the Heisenberg
operator, and Makri et & have pursued it more fully. The
problem is that sincé is infinitesimal (and ultimately set to
zero), the momentum jump at timevanishes so that the
backward trajectory exactly retraces the forward trajectory.
There is thus no possibility of interference effects between
distinct trajectories, very much the same shortcoming as that
of the linearized (classical Wigner) approximation. The effective
equivalence of the derivative form of the FB-IVR and the
linearized approximation has been seen in applicatféramd
can also be shown algebraically. Thus, if one explicitly
differentiates thel-dependence of the FB-IVR expression for
the quantity in eq 5.14 and then sét$o zero, the following
expression for the correlation function is obtained

Figure 4. Contour sketch of the two-slit potential energy surface,
V(xy), with the initial statej¢Cdepicted; from ref 10y.

cessful FB-IVR calculation by Ovchinnikov et 8t of the
resonance Raman spectrum pin a cluster of up to 10 Xenon
atoms.

To have a simple example, however, that can clearly
distinguish between which theoretical approaches can, and
cannot, describe true quantum coherence effects, we have
considered the textbook paradigm of quantum coherence
phenomena, namely transmission through a “two-slit” potelttal.

- 1 ., & Figure 4 shows the sketch of a contour plot of the 2-d potential
Cs(t) = (271) © [ dp, [ dao B(s(q)|1 - A5t energy surfacd/(xy) for this scattering problem. The initial
o stateg(q)[q=(x,y)] is a coherent state
19
= —||A4(Po.do) (5.16) lpC= |p;q;] (5.20)
Y g,

with g; localized in the region to the left of the barrier € 0)
and momentunp; in the x-direction. What is calculated is the
probability P(0) of the particle emerging to the right side of

whereAy is the Husimi function (eq 5.12). Noting the relation
between the Wigner and Husimi distributions

1 ., & 1 3 the barrier X > 0) at angled. With operatorsA andB defined
Qo) =exg— S|lvh"—+=-— : 5.17 by
Av(Po:do) D[ 4(V P 8%2) Au(Podo) (5.17) A
. . A= ol (5.21a)
one sees that eq 5.16 is indeed approximately the same as the B— 5((6 — 0() (5.21b)

classical Wigner (linearized) model

Can"(t) = (27h) " [ dp, [ ddo BS(A))ALPedo) (5.18)

_ iHth Ay iR
C. Applications of the FB-IVR. The form of the FB-IVR P(6) = [ple™0((0 — @) e IQ?H R (5.222)
for the correlation function suggests a natural way to proceed = (27h) ! f ° dp, g Pty it rod(@h g-iHUR) 47
with a calculation. For example, for operatddsof the form - (5.22b)
B(s@)), eq 5.10 for the correlation function can be written as '

the correlation forCag (t—) is P()

" - . and the limit of largd is taken. The FB-IVR is used to evaluate
Cas() = /" dpsB(pJ(27h) " [ dp, [ ddg A(Pedo) the matrix element in eq 5.22b, and the general expression (eq

i . N A 5.19) in this case becomes
{Co(Pordoiby) gSlPodopIh Do, 0ol AlPg A0 UDg, ol AlPo,Clo )

®19) po) = (211) [ dp, & ™™ [ dp, [ da py(PoTo)
whereA(Po,do) is the Husimi distribution function correspond- [®lpy 0o 0 ) -
ing to operato. The Husimi distribution provides the natural ————Cy(Pg,0o:P,) €FP0PMS (5 233)
weighting function for a Monte Carlo average over initial [$1Po Gl
conditions. FB-IVR calculations have been carried out this way h is th lized) Husimi distribution functi
for the reactive flux correlation function for a system consisting Where py 1S Ihe (nor_m_a_|ze ) Husimi distribution function
of a one-dimensional double well potential coupled to up to 40 corresponding to the initial state

vibrational degrees of freedotft! with excellent agreement with _ —F _ —F
essentially exact quantum (path integral) calculations for this Pr(Podo) = (27h) |m’°’q0|¢[ﬂ2 = (27h) |m)0’q0|pi’qiu]2

system. A full-dimensional treatment of hydrogen atom transfer F —y 5 22
in hydroxyphenyl oxazolé (51 vibrational degrees of freedom) = (27h) eXF{T(Qo = )" = (Po — py) 72 )’]
has also been successfully treated this way. It has also been (5.23b)

applied to the femtosecond photodetachment ,0f (Which

involves the evaluation of optical response functions by the FB- One thus performs a Monte Carlo average of the quantity in
IVR)1% and also to molecular energy transfer distribution curly brackets in eq 5.23a using the Husimi distribution of eq
functionsg® (i.e., P(E<E)). There is also a recent very suc- 5.23b as the sampling function.
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Figure 5. Angular distribution of a particle transmitted through the  Figure 6. Same as Figure 5, but with the addition of a bath of harmonic
two-slit potential, as given by the exact quantum calculation (QM), oscillators coupled to the two-slit potential; the different curves are

the forward-backward IVR (eq 5.23a) (FBSC-IVR), and the linear- for different temperatures for the harmonic bath; from ref 10y.
ized/classical Wigner model (LSC-IVR); from ref 10y.

) ) “decoherence” caused by coupling to an “environment”, but it
Figure 5 shows>(6) given by the FB-IVR, compared to the s ng different from many earlier examples of quenchiri§of

exact quantum result and also the result of the LSC-IVR/Wigner interference features when some degrees of freedom (here the
model. One sees that the latter approximation is not able to haymonic bath) are averaged over.
describe the interference structure (i.e., diffraction) while the  The important thing is that the FB-IVR is able to describe
FB-IVR can do so, and the reason is rather obvious: the LSC- tre quantum interference phenomena (and its quenching)! And
IVR implicitly assumes that the forward and backward trajec- the calculation is not so much more difficult than a completely
tories are infinitesimally close to each other (the same as the g|agsical one: i.e., in both, one must average over the phase
small p, approximation), so there is only a contribution from a  space of initial conditions, and in the FB-IVR, one must also
trajectory that goes through one of the holes and comes baCkintegrate over a one-dimensional (in these examples) jump
through the same hole. (Note that the final phase pe@p), parameter.
as well as the initial ongpg,qo), must not be too far fromp,q;); Another dramatic illustration of the ability of the FB-IVR to
cf. eq 5.23b.) The FB-IVR, however, integrates over all values gescribe quantum coherence effects is provided by considering
of the jump parameter so that some trajectories that go throughthe time-dependent probability distribution of a vibrational
one of the holes make the appropriate jump (at tijite come coordinate (i.e., a diatomic molecule) in a condensed phase
back through the other hole (and overlap the initial state). The anvironment (e.g., a liquid, a cluster, etc.), modeled here again

classical Wigner or Husimi (i.e., linearized) approximations can by the ubiquitous harmonic batfz The quantity of interest is
never describe this effect, which is the hallmark of semiclassical py

theory (i.e., interference between different classical trajectories). A A
This example becomes even more interesting when a har- P(r) = tr[A s (r — r(g)) e M (5.25a)
monic bath is introduced that is coupled to thelegree of
freedom; i.e., the two slits are “jiggled” vertically in Figure 4  which (analogous t&(6) above) corresponds to the correlation
by interaction with these degrees of freedom. OperAttren function C(t) with
becomes . .
N A=|pmp| e "oz (5.25b)
A=2 e 7 I¢d| (5.24a) B=o( - (@) (5.25¢)
where Ay is the Hamiltonian of the harmonic bath add=

tr(e‘ﬁ“b). Equation 5.23a then generalizes to (Note thatPy(r) would simply be the square modulus of the

time-dependent wave functiop;(r t)|2, for an isolated diatomic

_ i molecule.) With the delta function, eq 5.26c, represented in the
P(6) = (27h) ! f dp, € ngamf dp, f dalo f dP, f dQ, usual way

9lpg Gy (P Qole ™IPy QoL

9o.Po: - C 8(r — (@) = (rh) [ dp, e P PT@h (5 26
PH(Po:G0:Po: Qo) @IPoGo] TPyQyle 7Py Qy] 0 ( (@) = (27h) f,m P (5.26)
(5.24b) the result for the distribution functioBy(r) is the same as eq
5.24 (with@ —r, pg — pr, etc.).
where Figure 7 show®(r) first for the diatomic (a Morse potential
_ with parameters corresponding tg for which the vibrational
Pr(Pobo:Po:Qo) = period is~156 fsec) uncoupled to the harmonic bath. (The initial

(27h) F| (Do, 0l PP, Qole P4 IP,Q,IZ (5.24c)  state|¢Tor the diatomic is a coherent stafe,q[) with p = 0
andg = 2.4 A, considerably compressed from its equilibrium
Figure 6 showsP(0) so calculatetyy for various values of valuereq = 2.67 A.) Figure 7a is fot = 192 fsec (about 1.2
the bath temperature. As expected, as the temperature of thevibrational periods), Figure 7b fot = 640 fsec (about 4
bath is increased, the interference is progressively quenchedvibrational periods), and Figure 7c for= 1600 fsec (about 10
This is an example of the popularly discussed phenomenon ofvibrational periods); in each case, the FB-IVR result is the



2952 J. Phys. Chem. A, Vol

. 105, No. 13, 2001

Miller

15 |‘ I i T 15 T T T T T
i ] ; 1
i i FB-IVR ol 4 ————
i ---- quantum o T LSC-IVR
W LSC-IVR = [ i

P(r)

0
15 T T l T I T
T T T LI T T T L
! FB-IVR s LR
I _— — = r ——
61 i -~~~ gquantum 7] = 5L LSC-IVR |
{ i |:-- LSC-IVR i i
—~ I 1 0 L g
n | 2.2 2.4 26 2.8 3.0
< I
- g r(A)
i/ 3 Figure 8. Same as Figure 7, but with the addition of a bath of harmonic
2F [ - oscillators, fort = 192 fsec; panels-ac are for the bath temperature
as indicated. The solid line is the FB-IVR result, and the broken line
i the linearized IVR/classical Wigner (LSC-IVR) result.
0] AL LA AR VY'Y bttt
22 24 26 28 30 32 34 36 38 — M
=0 (double phase-space HK-SC-IVR)
r(A) 05
6 T T T T T T T y T T T 1
I — FB-IVR
5+ ——- quantum |
L — LSC-IVR
— 4r 05 [ A R A ,
n F | j AR i
< a3k
./ T
-05 | Y
26 28 30 32 34 36
r(A) o 10 20 30 20 50

t

Figure 7. Probability distribution of the vibrational coordinate of a  Figure 9. Average position as a function of tintgfor a particle in an
diatomic molecule (a Morse potential with parameters corresponding anharmonic potential. The QM curve is the exact quantum result, and
to Ip): (ajt = 192, (b) 640, and (c) 1600 fsec; for comparison, the those labeled by the parameteare for the Filinov parameters = ¢,
vibrational period is 156 fsec. The broken line is the exact quantum = ¢ of eqs 6.6-6.8. ¢ = 0 corresponds to the full SC-IVR (i.e., the

result (quantum), the heavy solid line the forwatzhckward IVR result double phase space averagé ala 6.2), and the FB-IVR result

(FB-IVR), and the thin solid line the linearized IVR/classical Wigner corresponds te = o (i.e., the single phase space averageeal$.4).
result (LSC-IVR); from ref 10z.

extremely well, and also the quenching (“decoherence”) that is

solid curve, the exact QM result the dashed line, and the LSC- induced by coupling to degrees of freedom that are averaged
IVR/classical Wigner result the dash-dot line. One sees a greatOVer

deal of quantum coherence structateecause many vibrational
states are mixed in by this initial statand that the FB-IVR

describes it essentially quantitatively, while (as expected) the  Fipally, as impressive as the performance of the FB-IVR of
linearized/Wigner approximation (i.e., classical mechanics with the previous section is, there are some situations for which it is
a Wigner distribution of initial conditions) has no hint of it. inadequate. Figure 9, for example, shows an example used by
Figure 8 now shows how this is modified by coupling to a Makri, et al.#24the expectation value &fin an 1-d anharmonic

bath (modeled by 40 explicit harmonic modes) at various potentialV(x) = (Y2)cox® — c3x3 + c4x%. (One can think ofX[
temperature$?? At sufficiently high temperature (depending on  as the correlation functioBag(t) with A = |¢[ip| andB = %.)

the strength of the coupling), the interference structure is The FB-IVR (the thin solid line in Figure 9) does not show the
quenched, and in this limit the FB-IVR results are essentially correct (thick solid line) recurrence of interference at longer
the same as the classical Wigner model. Thus again, the FB-time, i.e., after~10 vibrational periods. In this case, the FB-
IVR is able to describe the quantum interference structure IVR gives essentially the same results as those of the linearized/

VI. Further Improvements
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classical Wigner approximation. The full HK, i.e., the double Myq = 90 (Po,00)/%
phase space average (eq 5.3), on the other hand (the curve !
labeledc = 0 in Figure 4), gives results essentially indistin- My = 8qt2(p1’,ql')/8q1' (6.7)

guishable from those of the correct QM curve. One would thus
like a way to go beyond the FB-IVR, but perhaps not all the etc., and
way back to the full double phase space average of eq 5.3.
To see how to proceed, consider the product of two time & =c + hy
evolution operators 12

K = e—iﬂzm e—thllﬁ (6.1) &,=c,+ ZhLy (6.8)

(For the correlation functio@ag, t2 = —t;, and operatoBstands ¢, andc, are the two “Filinov parameters” that “tune” between
between the two propagators, but this will be treated as before, e single and double IVR, i.e., eq 6.2 and (6.4): dor= ¢, =

so it is sufficient to consider the simpler quantity in eq 6.1.) If 0, it is easy to see that eq 6.5 reverts to the double IVR, eq 6.2,
one uses a separate IVR, i.e., eq 2.11, for each propagator, thegyhjje in the limit c;, ¢, — , one has
one obtains the following double phase space average

X B ~ T S P12 YN
K = (2th) " [ dp, [ dag 27h) " [ dp,’ [ day’ Ip,,0x e \ ¢ 0@~
Tyt 1N 1) aiSe(pr an)h
[P1',01'1P1,01MP0, 0ol Cy, (Po:A0) Cy (P01 ) €7 o oAp Py, [27h 5, — Py (6.9)
gSu(Podo)/h (6.2) G ' ' .
the notation here should be clear: em., g1 = pa(Po,qo), 91~ and it is not hgrd to shqw that eq 6.5 then collapses to the single
(Po.qo) are the variables at timé that result from initial ~ IVR, eq 6.4; i.e., in this latter limitoy' = ou andpy’ = p1 SO

conditions po,qo), andpa, g2 = p2(p1’,a1’), 92(p1',q1’) are the that the trajectory is continuous at the intermediate tinehile
values at timet, that result from §61',q:'). On the other hand,  for finite value ofc, andc;, there is a coordinate and momentum
one can clearly combine the two propagators in eq 6.1 into onejump at timety; the size of the Filinov parametecs and c;
propagator for timet{ + t,) (cf. the FB-IVR) limits the amount of the “jump”. The implementation of eq 6.5
is obvious: one chooses initial valugs,(jo) and evolves the
K = efil:i(tzﬂl)/h (6.3) trajectory to timety, arriving at phase pointpg,1); here one
jumps to a new phase poin,(,g;")—the distance fromg,q1)
and represent it via a single IVR being determined by Monte Carlo sampling with the Gaussian
factors that limit the jump-and then evolves the trajectory to
K= the final time .
_ i Figure 9 also shows results of this unified single-double IVR
(27h) Ff dpo f da, |pzaQ2Dm’o'QO|Ct1+tg(vaqo) grolbodalt gpproacH,Oaai.e., eq 6.5 (suitably modified for having operator
(6.4) B = X between the two propagators, and with= —t, = t), for
several values of the Filinov parameters= ¢; = ¢c,. ¢ = 0
where herepz, g2 = p2(Po.do), d2(pPo,do) are the final values  corresponds to the full double IVR (which agrees well with the

that evolve for time t§ + t) from initial conditions po,qo). full quantum result), and one sees that increasing the value of

What we wish to show is how to go continuously from the c “tunes” the result progressively toward the single (i.e.,

double IVR, eq 6.2, to the single IVR, eq 6.4. forward—backward) IVR. The calculation is more efficient the
The trick is to use the modified Filinov filtering schefrie larger the value ot—because the integration ovesi(qs’) is

(cf. eq 4.6) applied to the double IVR, eq 6.2. The calculation progressively restrictedbut smaller values ot give better
is rather tedious but can be carried through; fhe 1 result agreement with the correct (QM) results. One therefore has the

istoaa possibility of going beyond the FB-IVR if necessary, and by a
continuous degree.
K=t d da. 2L [ do’ [ da’ Of even more relevance is that, for a system with many
( ) f ’pof % (27h) f P f % degrees of freedom, the Filinov parameters can be different for
gSelPraih dSulPo®l o (Mo " 01 |py, Gy Ox different degrees of freedom. Thus, one can choose large values
. . ) 1 for the “bath” degrees of freedom which are not so important,
[P, G| € 2~ gcalpr =Py /Zh{ 5(5152 + Z)(Q’Q + going all the way to the single (FB) IVR limit for them, while

& 5 o retaining the more accurate double IVR for the reaction
. 1 o = Y~ coordinate and other important degrees of freedom. Preliminary
PP)+-—PQ+¢ =QP 6.5 . . .
) 2y Q& 2 Q } (6-5) applications suggest this to be a very fruitful way to proceed.

where VII. Concluding Remarks

i A The initial value representation thus provides the framework

Q =My + h_Mpq" Q=My+ —iZqu for using classical molecular dynamics to implement semiclas-
4 sical theory for describing quantum effects in the dynamics of

(6.6) complex molecular systems. The FB version of the theory, as
) described in section V.B. for evaluating time correlation

functions, is especially attractive. The examples discussed in

with section V.C. show that it is capable providing an excellent

_ i
P=M,,+ M

L I h_‘Z T
P =M, +=M M

i Vap>
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description of quantum interference effects (which are the origin,
ultimately, of all quantum effects) and also the quenching of

these effects (decoherence) when there is sufficiently strong

coupling to environmental degrees of freedom. In proceeding
with applications to real molecular systems (or at least more

realistic models of them), one thus has some confidence that

the FB-IVR can allow one to find out when quantum effects
are important and when they are not.

An FB-IVR calculation for a typical time correlation function
requires an average over the initial conditions of classical

Miller

(4) (a) Miller, W. H.J. Chem. Physl97Q 53, 1949. (b) Miller, W. H.
J. Chem. Physl97Q 53, 3578. (c) Miller, W. H.Chem. Phys. Letfl97Q
7, 431. (d) Miller, W. H.Adv. Chem. Phys1974 25, 69;1975 30, 77.

(5) (a) Marcus, R. AChem. Phys. Lettl97Q 7, 252. (b) Marcus, R.
A. J. Chem. Physl971 54, 3965. (c) Marcus, R. AJ. Chem. Physl972
56, 3548. (d) Kreek, H.; Marcus, R. Al. Chem. Physl974 61, 3308. (e)
Fitz, D. E.; Marcus, R. AJ. Chem. Phys1973 59, 4380.

(6) (a) Herman, M. F.; Kluk, EChem. Phys1984 91, 27—34. (b)
Herman, M. F.Chem. Phys. Lettl997, 275 445-452.

(7) (a) Campolieti, G.; Brumer, RRhys. Re. A 1994 50, 997-1018.
(b) Campolieti, G.; Brumer, Rl. Chem. Phys1998 109 2999-3003. (c)
Campolieti, G.; Brumer, PJ. Chem. Phys1997 107, 791-803. (d)
McQuarrie, B. R.; Brumer, PChem. Phys. Let200Q 319 27—44. (e)

trajectories, just as a completely classical one does, plus only aBatista, V. S.; Brumer, Pl. Phys. Chemin press.

one (or low) dimensional integral (over the “jump parameter”).
There are some additional features, though, that increase th
difficulty of an FB-IVR calculation compared to ordinary
classical MD. First, the integrand for the average over initial
conditions is oscillatory (though much less so than without the
FB simplification). The most effective way at present for dealing
with this are the various stationary phase Monte Carlo or Filinov
filtering schemes (cf. eq 4.6); it would be useful to have even
more efficient ways to handle this aspect of the calculation.
Second, an SC-IVR calculation requires calculation of the
monodromy matrixes (the matrix of derivatives of the final
coordinates and momenta with respect to their initial values) in
order to construct the pre-exponential factor of the IVR

(8) (a) Kay, K. G.;J. Chem. Phys1994 100, 4377-4392. (b) Kay,
. G.J. Chem. Phy4994 100, 4432-4445. (c) Kay, K. GJ. Chem. Phys.
997, 107, 2313-2328. (d) Elran, Y.; Kay, K. GJ. Chem. Phys1999
110 8912-8918. (e) Elran, Y.; Kay, K. GJ. Chem. Phys1999 110, 3653~
3659. (f) Kay, K. G.J. Chem. Phys1994 101, 2250-2260.

(9) (a) Heller, E. J.J. Chem. Phys1991 94, 2723-2729. (b)
Sepulveda, M. A.; Tomsovic, S.; Heller, E. Bhys. Re. Lett. 1992 69,
402—-405. (c) Tomsovic, S.; Heller, E. Phys. Re. Lett. 1991 67, 664—
667.

(10) (a) Miller, W. H. J. Chem. Phys1991 95, 9428-9430. (b)
Keshavamurthy, S.; Miller, W. HChem. Phys. Letfl994 218 189-194.
(c) Spath, B. W.; Miller, W. H.J. Chem. Phys1996 104, 95-99. (d)
Spath, B. W.; Miller, W. H.Chem. Phys. Lettl996 262 486-494. (e)
Sun, X.; Miller, W. H.J. Chem. Phys1997 106, 916-927. (f) Sun, X.;
Miller, W. H. J. Chem. Phys1997 106, 6346-6353. (g) Batista, V. S.;
Miller, W. H. J. Chem. Phys1998 108 498-510. (h) Miller, W. H. The
Semiclassical Initial Value Representation for Including Quantum Effects

integrand. There have recently been several useful advances oih Molecular Dynamics Simulations. K8lassical and Quantum Dynamics

this topic: the log-derivative algorithd®,which has long been

recognized as the most effective way of integrating the coupled-

in Condensed Phase Simulatioris J. Berne, G. Ciccotti, D. F. Coker,
Eds.; World Scientific: Singapore, 1998; pp 61627. (i) Sun, X.; Miller,
W. H.J. Chem. Phys1998 108 8870-8877. (j) Wang, H.; Sun, X.; Miller,

channel Schrodinger equation for inelastic scattering, has beenw. H. J. Chem. Phys1998 108 9726-9736. (k) Sun, X.; Wang, H.; Miller,

very fruitfully applied to calculating the pre-fact&ft and
Batista et al’ have shown that an adiabatic approximation for

W. H.J. Chem. Physl998 109 4190-4200. (I) Sun, X.; Wang, H.; Miller,
W. H. J. Chem. Physl1998 109 7064-7074. (m) Miller, W. H.J. Chem.
Soc., Faraday Discus4998 110, 1-21. (n) Wang, H.; Song, X.; Chandler,

computing the monodromy matrices is often quite adequate, andp : willer, w. H. J. Chem. Phys1999 110, 4828-4840. (0) Skinner, D.:

this greatly simplifies their calculation.

Intense effort is thus still being invested in trying to improve
SC-IVR methodology, to minimize the effort required for such
calculations beyond that of a completely classical treatment.
There is certainly room for further development, but already
the FB-IVR version of the theory is very far along this road. It

Miller, W. H. Chem. Phys. Letfl999 300, 20—26. (p) Batista, V. S.; Zanni,
M. T.; Greenblatt, B. J.; Neumark, D. M.; Miller, W. H.. Chem. Phys.
1999 110, 3736-3747. (q) Sun, X.; Miller, W. HJ. Chem. Phys1999
110 6635-6644. (r) Guallar, V.; Batista, V. S.; Miller, W. Hl. Chem.
Phys.1999 110, 9922-9936. (s) Miller, W. H.J. Phys. Chenl999 103
9384-9387. (t) Skinner, D. E.; Miller, W. HJ. Chem. Phys1999 111,
10787-10793.(u) Wang, H.; Thoss, M.; Miller, W. H. Chem. Phy200Q
112 47-55. (v) Coronado, E. A.; Batista, V. S.; Miller, W. H. Chem.

should be possible to apply this approach as it presently standsPhys.200q 112, 5566-5575. (w) Thoss, M.; Miller, W. H.; Stock, Gl.

to a wide variety of molecular processes, with confidence that

it can reliably describe the quantum aspects of the dynamics.
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